курсовые,контрольные,дипломы,рефераты
План
Введение
1. Разработка структуры усилителя
2. Разработка и расчет оконечного каскада усилителя мощности
2.1. Выбор первой пары транзисторов
2.1.1. Построение нагрузочной прямой в режиме В
2.1.2. Построение мощностных характеристик
2.1.3. Построение нагрузочной прямой в режиме АВ
2.2. Выбор второй пары транзисторов
2.2.1. Построение нагрузочной прямой в режиме В
2.2.2. Построение нагрузочной прямой в режиме АВ
2.3. Расчет напряжения смещения
2.4. Нелинейные искажения
3. Разработка и расчет предоконечного каскада
3.1. Выбор типа транзистора
3.2. Построение нагрузочных прямых
4. Разработка и расчет промежуточного каскада
4.1. Выбор операционного усилителя
4.2. Расчет масштабирующего усилителя с инвертированием сигнала
5. Разработка и расчет входного каскада
5.1. Выбор операционного усилителя
5.2. Расчет масштабирующего усилителя без инвертирования сигнала
6. Разработка и расчет блока питания
7. Разработка и описание печатной платы.
Заключение
Список использованной литературы
Введение
Несмотря на быстрое развитие усилительной техники, бестрансформаторные усилители мощности по-прежнему играют важную роль.
Такие усилители могут быть легко выполнены по интегральной технологии. Именно поэтому современные БМУ представляют собой компактные и экономичные устройства. Кроме того, отсутствие частотно-зависимых элементов в цепях связи позволяет вводить глубокие отрицательные обратные связи не только по переменному, но и по постоянному току, что существенно улучшает характеристики усилителей.
Основной функцией усилителей мощности (УМ) является обеспечение в нагрузке заданного значения мощности; усиление по напряжению является второстепенным фактором, в результате УМ являются основными потребителями энергии источников питания. Для обеспечения высокого КПД мощные выходные каскады работают в режиме класса В или АВ. Схемы строят двухтактными на транзисторах различного типа проводимости (комплементарных), включенных по схеме с ОК или с ОЭ.
Исходные данные:
- мощность, отдаваемая в нагрузку ;
- сопротивление нагрузки ;
- внутреннее сопротивление источника сигнала ;
- диапазон усиливаемых частот ;
- коэффициент частотных искажений ;
- коэффициент гармоник ;
1 Разработка структуры усилителя
Усиление – это процесс увеличения электрических сигналов колебаний с сохранением их частотного спектра и фазовых соотношений. В настоящее время усилители электрических сигналов применяются практически в любых электронных устройствах, таких как: устройства воспроизведения и записи информации, устройства автоматики, измерительные устройства, вычислительная техника и т.д.
|
|
|
Ро
|
Рисунок 1 - Общая схема усилителя.
Процесс усиления электрического сигнала происходит за счет мощности, потребляемой от источника питания. Часть мощности Ро в усилителе преобразуется в мощность Р2, т.е. в мощность, выделяемую в нагрузке. Для преобразования мощности Ро в мощность Р2 затрачивается мощность Р1, т.е. мощность источника сигнала. Таким образом, усиление – процесс увеличения мощности источника сигнала.
В этом данном курсовом проекте проектируется устройство, структурная схема которого изображена на Рисунке 2.
|
|
|
|
|
|
|
|
Рисунок 2 - Структурная схема проектируемого усилителя.
2. Разработка и расчет оконечного каскада усилителя мощности
Выберем в качестве оконечного каскада двухтактный, бестрансформаторный, каскад на составных биполярных транзисторах, включенных по схеме с общим коллектором. Это позволит нам осуществить непосредственную связь с нагрузкой, а значит, обойтись без громоздких трансформаторов и разделительных конденсаторов. А т.к. последние являются частотно-зависимыми элементами, то их отсутствие существенно расширит полосу пропускания усилителя. Отсутствие частотно-зависимых элементов позволяет вводить глубокие обратные связи по постоянному току, что улучшает характеристики усилителя.
Выберем схему построения оконечного каскада.
Для повышения КПД транзисторы оконечного каскада используют в режиме класса В. Тогда оконечный каскад будет состоять из двух симметричных плеч, каждое из которых будет работать параллельно и в противофазе друг другу на общую нагрузку (Рисунок 3).
Однако при этом существенно увеличиваются нелинейные искажения. Поэтому выходные каскады обычно используют в режиме АВ (при этом в принципиальную схему добавляется цепь смещения), обеспечивая высокий КПД и малые нелинейные искажения. Такие схемы выполняют на комплиментарных транзисторах.
При значительной мощности выходного сигнала (более 5 Вт) или при слишком большом коэффициенте гармоник может возникнуть ситуация, когда для предоконечного каскада тоже может потребоваться режим АВ. В этом случае оконечный каскад выполняют на составных транзисторах.
2.1 Выбор 1ой пары транзисторов
Первая пара транзисторов составляет свой каскад. Он состоит из двух комплементарных транзисторов V1 и V2, работающих на общую нагрузку . По своим усилительным свойствам транзисторы V1 и V2 должны быть идентичны. В схеме (Рисунок 4) транзисторы V1 и V2 включены с ОК. Напряжения источников питания равны между собой . При положительных входных сигналах транзистор V1 работает в активном режиме и усиливает входной сигнал, а транзистор V2 заперт. При отрицательных входных напряжениях - наоборот. Таким образом, транзисторы работают в активном режиме попеременно, каждый в течение одного полупериода входного напряжения. При оба транзистора заперты.
а) рассчитаем амплитуду выходного питания:
U = (2Pн Rн )1/2;
==15,49 В;
б) выберем напряжение питания:
Eп = Uнм + Uост= 15,49 + 6 = 21,49 , следовательно Eп = 21 В
Uост= 6 В;
в) рассчитываем мощность, рассеиваемую на одном транзисторе:
= 6,2 Вт
г) ток нагрузки:
А, то есть Ikm = 1,94 A;
д) исходя из рассчитанных данных выбираем пару транзисторов:
это транзисторы КТ-818В и КТ-819В.
КТ-818В - это кремневые мезаэпитаксиально – планарные p-n-p-транзисторы предназначены для применения в ключевых и линейных схемах. Корпус пластмассовый с гибкими выводами или металлический, масса не более 15 г.
КТ-819В - это кремневые мезаэпитаксиально – планарные n-p-n-транзисторы предназначены для применения в ключевых и линейных схемах, узлах, блоках аппаратуры. Корпус пластмассовый с гибкими выводами, масса не более 2,5 г. или металлостеклянный, масса не более 15 г.
2.1.1 Построение нагрузочной прямой в режиме В
Будем рассчитывать транзисторы в режиме класса В. Этот режим соответствует условию, когда начальное смещение между базами и эмиттерами транзисторов отсутствует и при отсутствии входного сигнала ток коллекторов близок к нулю. Анализ энергетических характеристик усилителя проводят для одного плеча, считая, что параметры второго плеча идентичны.
Строим нагрузочную прямую:
1) Iк = 0, Uкэ = Еп = 21 В
2) Uкэ = 0,
Рисунок 5 - Выходные характеристики транзистора КТ-819В.
Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
;
и точку 4: ; = 6 В;
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
, ,
, ,
, .
Рисунок 6 - Входная характеристика транзистора КТ-819В.
Из входной характеристики находим:
; .
2.1.2 Построение мощностных характеристик
На Рисунке 7 представлены мощностные характеристики усилителя в режиме В. Это зависимости мощностей нагрузки, потребляемой от источника питания и рассеиваемой на коллекторах транзисторов, от амплитуды напряжения на нагрузке.
Рисунок 7 - Мощностные характеристики усилителя.
2.1.3 Построение нагрузочной прямой в режиме АВ
В режиме класса АВ за счет введения небольшого смещения и задания также небольшого тока покоя транзисторов амплитудная характеристика изменяется и становится более линейной, переходные искажения существенно уменьшаются. Если задать ток покоя равным максимальному току в нагрузке, то получим режим класса А. Однако переходные искажения в достаточной степени уменьшаются, даже если ток покоя составляет незначительную часть максимального тока в нагрузке.
Итак, для первой пары транзисторов:
Ik0= 0,1Iнm = 0,1*1,94 = 0,194 A
Теперь построим нагрузочную прямую в режиме АВ. Она проходит через точку АВ с координатами , и точку 3 с координатами
=19,5–14,49 = 5,01 В,
=1,94+0,194 = 2,134 А
Рисунок 8 - Выходные характеристики транзистора КТ-819В.
Теперь переносим точки на входную характеристику:
,
,
,
.
Для этих токов находим соответствующие напряжения Uбэ:
,
,,
.
Рисунок 9 - Входная характеристика транзистора КТ-819В.
Найдем амплитудные значения :
Откуда получаем: ;
=0,35+14,49=14,84В.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
,
.
2.2 Выбор 2ой пары транзисторов
Для второй пары транзисторов составного каскада входные параметры первого являются выходными, то есть для выбора транзисторов используем следующие данные:
Eп = Uнм + Uост= 14,84 + 6 = 20,84 , следовательно Eп = 21 В
Uост= 6 В;
= 0,15 Вт
, то есть Ikm = 50 мA;
Исходя из рассчитанных данных выбираем пару транзисторов:
это КТ-629А и КТ-630А.
КТ-629А - это кремниевые эпитаксиально–планарные p-n-p-транзисторы предназначены для использования в быстродействующих импульсных и других неремонтируемых гибридных схемах, микромодулях, узлах и блоках, имеющих герметичную защиту от действия солнечного света, влаги и так далее, для аппаратуры широкого применения. Оформление бес корпусное, на диэлектрической подложке. Масса не более 0,02 г.
КТ-630А - это кремневые планарные n-p-n-транзисторы используются в быстродействующих импульсных и других схемах. Корпус металлический, герметичный, с гибкими выводами, масса не более 2 г.
2.2.1 Построение нагрузочной прямой в режиме В
Строим нагрузочную прямую:
1) Iк = 0, Uкэ = Еп = 21 В
2) Uкэ = 0, 21 / 297 = 70 мА;
Выходные характеристики:
Нагрузочная прямая на выходных характеристиках каждого из транзисторов проходит через точку В(1) с координатами
; =21В
и точку 4: ; = 6 В;
Рисунок 10 - Выходные характеристики транзистора КТ-630А.
На входной характеристике транзистора положение рабочей точки определяется в соответствии с положением рабочей точки на выходных характеристиках.
, ,
, ,
, .
Рисунок 11 - Входная характеристика транзистора КТ-630А.
2.2.2 Построение нагрузочной прямой в режиме АВ
Теперь построим нагрузочную прямую в режиме АВ для второй пары транзисторов. Она проходит через точку с координатами , и точку с координатами
= 19 – 14,84 = 4,16В,
= 50*10-3+10*10-3 = 60мА
, так как ;
Затем переносим точки на входную характеристику:
,
,
,
.
Рисунок 12 - Выходные характеристики транзистора КТ-630А.
Для этих токов находим соответствующие напряжения Uбэ:
,
,
,
.
Рисунок 13 - Входная характеристика транзистора КТ-630А.
Найдем амплитудные значения:
Откуда получаем: ;
=0,13+14,84 = 14,97В.
Рассчитав максимальные значения входного тока и напряжения , определяют мощность, потребляемую входной цепью усилителя от предыдущего каскада и входное сопротивление:
,
,
2.3 Расчет напряжения смещения
Для режима АВ посчитаем напряжение смещения:
;
;
Исходя из полученного напряжения смещения выбираем диоды, которые компенсируют его. Выберем три универсальных диода КД519А.
2.4 Нелинейные искажения
Транзисторы в УМ работают при значительных амплитудах сигнала, поэтому усилителям мощности присущи значительные нелинейные искажения. В режиме класса В усилители являются экономичными, но обладают повышенными искажениями, которые определяются, во-первых, существенной нелинейностью входных характеристик транзисторов, во-вторых, неидентичностью как входных, так и выходных характеристик и, в-третьих, нелинейной зависимостью тока коллектора от тока базы.
В схеме с ОК уменьшение нелинейных искажений достигается за счет 100%-ной отрицательной обратной связи по напряжению. Построения амплитудной характеристики каскада ОК, работающего в режиме В соответствует уравнениям:
Rc=0 ; Rн =8Ом
;
Для токов коллектора найдем Uн:
;
;
;
.
Для токов базы и соответствующим им найдем Евх:
, ,
, ,
, ,
, .
;
;
;
.
Построение амплитудной характеристики для режима АВ:
Эта характеристика более линейна вблизи начала координат по сравнению с режимом В.
; и
Для токов коллектора найдем Uн:
;
;
;
.
Для токов базы и соответствующим им найдем Евх при
:
, ,
, ,
, ,
, .
;
;
;
.
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме В:
.
Теперь посчитаем коэффициент нелинейных искажений по третьей гармонике в режиме АВ:
.
Рисунок 14 - Амплитудная характеристика оконечного каскада.
3. Разработка и расчет предоконечного каскада
При необходимости получения больших выходных токов существенно возрастает ток, потребляемый базовыми цепями транзисторов УМ от предварительного каскада. Предварительные каскады, как правило, являются усилителями напряжения, работающими в режиме класса А.
Предоконечный каскад предназначен для согласования оконечного каскада на составных комплиментарных транзисторах, работающих в режиме класса АВ, с выходом ОУ А2. Предоконечный каскад построен на биполярном транзисторе n-p-n типа, который включен по схеме с ОЭ в цепь смещения оконечного каскада вместо резистора R4 (Рисунок 15).
Рисунок 15 - Принципиальная схема предоконечного и оконечного каскадов.
3.1 Выбор типа транзистора
Для предоконечного каскада входные параметры второй пары составного каскада являются выходными, то есть для выбора транзисторов используем следующие данные:
; =14,97В.
,,
Eк =2Еп ,следовательно Eк = 42 В
;
Исходя из рассчитанных данных выбираем транзистор: это КТ-601А - кремневые планарные n-p-n-транзисторы предназначенные для работы в радиовещательных и телевизионных приемниках, в усилительной аппаратуре и других устройствах. Корпус герметичный, металлический, с гибкими выводами, пластмассовый. Масса транзистора не более 2 г.
3.2.1 Построение нагрузочных прямых
1) Строим нагрузочную прямую по постоянному току:
а) Iк = 0, Uкэ = Ек = 42 В
б) Uкэ = 0, 42 / 3476 = 11 мА;
2) Строим нагрузочную прямую по переменному току:
а) ;
б) IK=0
Рисунок 16 - Выходные характеристики транзистора КТ-601А.
Затем переносим точки на входную характеристику:
,
,
,
Рисунок 17 - Входная характеристика транзистора КТ-601А.
Для этих токов находим соответствующие напряжения Uбэ:
,
,
,
Выбрав необходимый режим работы транзистора, то есть исходное положение рабочей точки на нагрузочной прямой и определив по характеристикам ток и напряжение смещения базы, необходимо обеспечить во входной цепи транзистора это напряжение смещения. Простейший способ обеспечить это смещение - включить в цепь базы транзистора источник напряжения Uбэ0.
Iд >>Iб; Iд =(3.. 5)Iб = 4Iб0 = 4*118 = 472 мкА;
4. Разработка и расчет промежуточного каскада
Данный каскад будет построен на операционном усилителе. Операционный усилитель – это усилитель постоянного тока, имеющий высокий коэффициент усиления порядка несколько сотен единиц.
В данном каскаде применяем масштабирующий операционный усилитель с инвертируемым сигналом.
Рисунок 18 - Принципиальная схема промежуточного каскада.
Основной функцией этого усилителя умножение входного сигнала на постоянный коэффициент. В данной схеме операционный усилитель охвачен отрицательной параллельной обратной связью по напряжению.
4.1 Выбор операционного усилителя
Основные параметры операционного усилителя:
1) КU - коэффициент усиления по постоянному току, чем больше коэффициент, тем ближе операционный усилитель к идеальному.
2) Rвх – входное сопротивление;
3) Rвых – выходное сопротивление;
4) - напряжение питания, - около 5%;
5) Uвыхm – максимальная амплитуда выходного сигнала 80 %Еп
6) R н,min (1…2) кОм
7) I н,max = (5…10) мА
8) fв – верхняя граничная частота;
10) есм – напряжение смещения нуля;
11) Iвх1, Iвх2
Выберем операционный усилитель К140УД6, у которого
Uсм = 10 мВ, Iвх= 30 нА, ΔIвх = 10 нА, Uп= (5-17)В, Iпот= 4 мА, Rвх=1МОм, кос.сф.=70 Дб, Rн,min =1кОм.
4.2 Расчет масштабирующего усилителя с инвертированием сигнала
При анализе усилительных свойств схемы на операционном усилителе будем считать, что
;
так как , откуда получим
Также ,
из предыдущего каскада имеем Uвых = 0,04 В, а Uвх = 5 мВ, откуда
Теперь рассчитаем R1 и R2:
Зададимся произвольным значением R2 при условии R2>>Rнmin ,
Так как Rнmin = 1 кОм , откуда
С другой стороны
>>I0
, >>103 I0
Пусть I0 = 0,001 мкА, тогда >> 1 мкА, следовательно =10 мкА
,
R2<< Rвх, Rвх= 1МОм
, так как к0→∞, то
5. Разработка и расчет входного каскада
Данный каскад также будет построен на операционном усилителе. Только в отличие от предыдущего каскада мы выбираем масштабирующий усилитель без инвертирующего сигнала. Это каскад согласовывает высокое входное сопротивление сигнала с каскадом, обладающим более меньшим входным сопротивлением.
Операционный усилитель охвачен отрицательной последовательной обратной связью по напряжению.
Рисунок 19 - Принципиальная схема входного каскада.
5.1 Выбор операционного усилителя
Выберем операционный усилитель К140УД6, у которого
Uсм = 10 мВ, Iвх= 30 нА, ΔIвх = 10 нА, Uп= (5-17)В, Iпот= 4 мА, Rвх=1МОм, кос.сф.=70 Дб, Rн,min =1кОм.
5.2 Расчет масштабирующего усилителя без инвертирования сигнала
При анализе усилительных свойств схемы на операционном усилителе будем считать, что
;
так как , откуда получим
.
Также ,
из предыдущего каскада имеем Uвых = 5 мВ, а Uвх = 5 мВ, откуда
Теперь рассчитаем R1 и R2:
Зададимся произвольным значением R2 при условии R2>>Rнmin ,
Так как Rнmin = 1 кОм , откуда
С другой стороны
>>I0
, >>103 I0
Пусть I0 = 0,001 мкА, тогда >> 1 мкА, следовательно, =10 мкА
,
R2<< Rвх, Rвх= 1МОм
, так как к0→∞, то
6. Разработка и расчет блока питания
Блок источника питания необходим для преобразования переменного напряжения сети (~220 В, 50 Гц) в постоянное напряжение, необходимое для питания всех узлов проектируемого устройства. Схема выпрямителя напряжения представлена на Рисунке 20.
Рисунок 20 - Схема выпрямителя напряжения
Рисунок 21 - Структура трансформатора ТПП267-127/220-50.
Таблица 1. Основные параметры трансформатора ТПП267-127/220-50
Рном, Вт |
Ток первичной обмотки, А |
Напряжение обмоток, В |
Ток вторичных обмоток, А | ||
11-12, 13-14 |
15-16, 17-18 |
19-20, 21-22 |
|||
57 | 0.615/0.36 | 5 | 4.97 | 1.31 | 2.52 |
Для подключения трансформатора к сети ~220В необходимо соединить выводы первичной обмотки 3 и 7, 1 и 6, а напряжение подавать на выводы 2 и 9. На выходе трансформатора должно быть напряжение, действующее значение которого 1.11Uср=1.11*40=44.4В, т.к. диодный мост будет выделять постоянную составляющую напряжения, т.е. Uср. Для получения постоянного напряжения на выходе трансформатора соединим последовательно все вторичные обмотки. Соединим выводы 12 и 15, 16 и 19, 20 и 13, 14 и 17, 18 и 21. Обмотки коммутируются подобным образом для того, чтобы можно было вывести среднюю точку (выводы 13 и 20). Выходное напряжение снимается с выводов 11 и 22. После трансформатора ставится диодный мост. В качестве диодов VD1-VD4 выбираем диоды 2Д220А, параметры которых Iпр max=6А, Uобр max=400 В, Uпр=1 В. на выходе диодного моста для сглаживания пульсаций поставим емкость. Для обеспечения коэффициента пульсаций Кп=0.05 необходима емкость С»600 мкФ. В качестве этой емкости выберем 3 параллельно соединенных алюминиевых оксидно-электрических конденсатора К50-20-100В-220мкФ.
На выходе получаем постоянное напряжение Uп1=±21±1В. от этого напряжения будет питаться усилительный каскад. Для питания остальных узлов устройства необходимы напряжения Uп2=±10 В и Uп3=±5 В. Для этого подключим к Uп1=±21В каскад, изображенный на Рисунке 22.
Рисунок 22 - Цепь питания маломощных устройств.
Рассчитаем цепь питания, изображенную на Рисунке 22. Выберем стабилитроны VC1 и VC2 – 2С215Ж с напряжением стабилизации 15 В и током стабилизации 4.7мА, VC3 и VC4 – 2С147Г с напряжением стабилизации 5 мА.
Сопротивления R3 и R4 выбираем из условия
.
Тогда можно найти емкость С2:
.
Выбираем конденсатор К50-6-16В-50 мкФ±5%.
Сопротивления R1 и R2 выбираем из условия:
.
Тогда можно найти емкость C1:
.
Выбираем конденсатор К50-6-16В-50 мкФ±5%.
7. Разработка и описание печатной платы
Основная цель конструирования – создание коммутационного устройства для объединения всех элементов в функциональную схему с обеспечением требуемых технических и электрических параметров в заданном диапазоне характеристик при минимальных затратах.
Для этого необходимо выбрать тип печатной платы, определить класс точности, установить конфигурацию и габаритные размеры.
При конструировании печатных плат необходимо особое внимание обращать на выбор материала платы. Для печатных плат, эксплуатируемых при малых механических нагрузках, рекомендуется использовать гетинакс, при больших – стеклотексолит.
Габаритные размеры, конфигурацию и место крепления печатной платы выбирают в зависимости от того, где эти платы будут использоваться. В нашем случае будем разрабатывать печатные платы простой прямоугольной формы.
Размещение элементов конструкции печатных плат рекомендуется условной координатной сеткой.
Для удобства расположим каждый отдельный узел на отдельной печатной плате: УМ на одной плате, источник питания на другой.
Заключение
В данной работе спроектирован бестрансформаторный низкочастотный усилитель мощности, соответствующий заданным параметрам.
В ходе работы разработана принципиальная электрическая схема этого усилителя, с указанием причин выбора именно такой конфигурации. По каждому из каскадов отдельно также дается краткое описание.
В данной работе представлен расчет каждого из каскадов усилителя и преведены используемые в процессе расчета характеристики.
Также приведен расчет нелинейных искажений, создаваемых оконечным каскадом, работающим в режиме класса АВ. Нелинейные искажения предварительных каскадов очень малы, поэтому при расчете общего коэффициента нелинейных искажений не учитывается.
К данному курсовому проекту прилагается чертеж, выполненный на бумаге формата А1 и представляет собой принципиальную электрическую схему спроектированного усилителя, вид разработанной печатной платы со стороны проводящего рисунка и крепление элементов на печатной плате.
Список использованной литературы
1. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник. Под общ. ред. Н.Н.Горюнова. – М.: Энергоатомиздат, 1987. – 744с.
2. Интегральные микросхемы. Справочник. Под ред. Б.В. Тарабрина. - М.: Радио и связь, 1983г -528с.
3. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Под общ. ред. Н.Н.Горюнова. - М.: Энергия, 1976г -744с.
4. Транзисторы для аппаратуры широкого применения. Справочник. Под ред. Б.Л.Перельмана. - М.: Радио и связь, 1981г -656с.
5. Лукашенков А.В. Электронные устройства автоматики и телемеханики. Лабораторная работа №16. Расчет и исследование бестрансформаторных усилителей мощности. Методические указания. - Тула.: ТулПИ, 1988г -32с.
6. Воробьев Н.И. Проектирование электронных устройств. - М.: Высшая школа, 1989г -223с.
7. Александров К.К, Кузьмина Е.Г. Электротехнические чертежи и схемы. - М.: Энергоатомиздат, 1990г-228с.
План Введение 1. Разработка структуры усилителя 2. Разработка и расчет оконечного каскада усилителя мощности 2.1. Выбор первой пары транзисторов 2.1.1. Построение нагрузочной прямой в режиме В 2.1.2. Построение мощностных х
Усилитель напряжения на биполярном транзисторе
Усилитель низкой частоты
Усилитель радиолинейной линии связи
Усилитель систем автоматики
Усилительный каскад на биполярном транзисторе
Электрические станции сети и системы
Электродинамический преобразователь энергии с тиристорной схемой питания
Электромеханические элементы
Спутниковые системы навигации GPS и ГЛОНАСС
Вибір й оцінка ефективності процедур кодування даних
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.