курсовые,контрольные,дипломы,рефераты
Блез Паскаль (1623-1662)
Блез Паскаль был сыном Этьена Паскаля, корреспон-
дента Мерсенна. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл
“теорему Паскаля” о шестиугольнике, вписанном в кони-
ческое сечение. Эта теорема была опубликована 1691 г. на
одном листке бумаги и повлияла на Дезагра.Через несколь-
ко лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Порт-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе.
Леонард Эйлер (1707-1783)
Самый плодовитый математик восемнадцатого столетия, если только не всех времен, - Леонард Эйлер. Его отец изу-
чал математику под руководством Якоба Бернули, а Лео-
нард под руководством Иоганна. Когда в 1725 г. сын Иоганна Николай уехал в Петербург, молодой Эйлер пос-
ледовал за ним и основался в Петербургской академии до 1741 г. С 1741 по 1766 г. Эйлер находился в Берлинской академии под особым покровительством Фридриха II, а с 1766 до 1783 г. он снова в Петербурге, теперь уже под эги-
дой императрицы Екатерины. Он был дважды женат и имел тринадцать детей. Жизнь этого академика была почти целиком посвящена работе в различных областях чистой и прикладной математики. Хотя он потерял в 1735 г. один глаз, а в 1766 г. – второй, ничто не смогло ослабить его про-
дуктивность. В течении его жизни увидели свет 530 книг и статей; умирая он оставил много рукописей, которые Петер-
бургская академия опубликовала в течении 47 лет. Это довело число его работ до 886.
когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии”, огромном томе, содержащем ак-
сеоматическое построение механики и закон тяготения -
закон управляющий падением яблока на землю и движени-
ем Луны вокруг Земли.
Эварист Галуа (1811-1832)
Парижская среда с ее напряженной математической деятельностью породила, около 1830 г. гения первой вели-
чины, которой подобно комете исчез также внезапно, как и
появился. Эварист Галуа, сын мера маленького городка вблизи Парижа, дважды не был принят в Политехническую
школу и лишь затем он поступил в Нормальную школу, но был оттуда уволен. Он старался просуществовать, обучая математике и одновременно стараясь как-нибудь совмес- тить свою страстную любовь к науке и приверженность к демократическим идеям. Галуа как республиканец участ-
вовал в революции 1830 г., несколько месяцев провел в тюрьме и вскоре после этого, двадцати одного года от роду, был убит на дуэли. Две статьи, которые он послал в печать, пропали в редакторских ящиках, несколько других статей были напечатаны спустя много лет. Перед дуэлью он напи-
сал одному из друзей резюме своих открытий и попросил
о его открытиях сообщить ведущим математикам.
Готфрид Вильгельм Лейбниц (1646-1716)
Готфрид Вильгельм Лейбниц родился в Лейпциге, а боль-
шую часть жизни провел при ганноверском дворе, на служ-
бе у герцогов, одним из которых стал английским королем
под именем Георга I. . Лейбниц был еще более правоверным
христианином, чем другие мыслители его столетия. Кроме философии, он занимался историей, теологией, линг-
вистикой, биологией, геологией, математикой, дипломатией и «искусством изобретения». Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей пружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. «Общая наука» которую он пытался построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски «всеобщей характеристики» привели его к занятиям перестановками, сочетаниями и к символической логике.
Родился в Фонтене-лс-Конт, Париж. Французский математик. По профессии юрист. Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-н степеней. Среди открытий сам В. особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений. Виет предложил метод, сходный с позднейшим методом Ньютона. В тригонометрии Виет дал полное решение задачи об определении всех элементов плоского или сферич. треугольника по трем данным. Впервые рассмотрел бесконечные произведения. Сочинения были написаны трудным языком и поэтому получили меньшее распространение, чем заслуживали
Николай Иванович Лобачевский (1792-1825)
Вся жизнь Николая Ивановича Лобачевского была отдана науке и его родному Казанскому университету, который он окончил в 1811 г., где стал профессором (в 1816 г.), был деканом и в течение двадцати лет ректором. С самого начала своей научной работы он занимался вопросами обоснования анализа и аксиоматикой геометрии. Получилась новая геометрическая система, "о которой, как уже упоминалось, Лобачевский впервые и первый сообщил 11 (23) февраля 1826 г. в Казанском университете. Как Эйлер, Лобачевский под конец жизни почти ослеп, и свою последнюю работу по открытой им геометрии он продиктовал («Пангеометрия», 1855).
Бонавентура Кавальери (1598-1647)
Родился в Болонье. Итальянский математик. Монах ордена иеронимитов. С 1629 по рекомендации Г. Галилея занимал кафедру математики в Болонском университетете. В труде «Геометрия» (1635) Ковальери развил новый метод определения площадей и объёмов. Ввёл понятие «суммы всех» неделимых, проведённых внутри контура фигуры. Отношение двух «сумм всех» неделимых явилось зародышевой формой отношения двух определённых интегралов. Труды Ковальери сыграли большую роль в формировании исчисления бесконечно малых.
Все начинания Чебышев поддерживал своим авторитетом, но организационного участия в них не принимал, так как в 1847 г. переехал в Петербург, где работал до своей кончины. Тридцать пять лет Чебышев читал лекции в Петербургском университете, с 1853 г. он был членом Академии наук. Его преподавательская деятельность была исключительно плодотворной.
Родился в Петербурге. Немецкий математик. В 1867 окончил Берлинский университет. Кантор разработал теорию бесконечных множеств и теорию трансфинитных чисел. В 1874 он доказал несчётность множества всех дейст-вительиых чисел, установив существование неэквивалентных (т. е. имеющих разные мощности) бесконечных множеств, сформулировал (1878) общее понятие мощности множества. В 1879—84 Кантор систематически изложил принципы своего учения о бесконечности. Идеи Кантора встретили со стороны современников резкое сопротивление, но вcледствии оказали большое влияние на развитие математики.
Евклид (3 век до н. э.)
О жизни Евклида мы не имеем никаких достоверных данных. Вероятно, он жил во времена первого Птолемея (306—283), которому, согласно преданию, он заявил, что к геометрии нет «царской дороги». Его наиболее знаменитое и наиболее выдающееся произведение — тринадцать книг его «Начал» но ему приписывают несколько других меньших трудов. Среди последних так называемые «Данные», содержащие то, что мы назвали бы приложениями алгебры к геометрии.. Это первые математические труды, которые дошли до нас от древних греков полностью. Эта книга, была основной при изучении геометрии.
Пифагор (580-500 л. до н. э.)
Древнегреческий мыслитель, религиозный и политический деятель, основатель пифагореизма. Скудные сведения о его жизни и учении трудно отделять от легенд, представляющих Пифагора как полубога, совершенного мудреца. В зрелом возрасте он поселился в южно италийском г. Кротоне, где основал строго закрытое сообщество своих последователей, уже при жизни почитавших его как высшее существо.
В области математики П. приписы- вается систематич. введение доказательств в геометрию, построение планиметрии прямолинейных фигур, создание учения о подобии, доказательство теоремы, С именем П. связывают также учение о чётных и ;
нечётных, простых и составных числах,
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.