База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Вопросы и ответы по биологии на экзамен (10-11 класс, Украина)) — Биология

7.8.          УГЛЕВОДЫ, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы — гликопротеиды, гликолипиды, гликозиды и др. Углеводы — первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы — крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).

9.             ЛИПИДЫ  (жиры, холестерин, некоторые витамины и гормоны), их элементарный состав – атомы углерода, водорода и кислорода. Функции липидов: строительная (составная часть мембран), источник энергии. Роль жиров в жизни ряда животных, их способность длительное время обходиться без воды благодаря запасам жира

10.           СТРОЕНИЕ БЕЛКОВ Практически все белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью —СО—NH—, которая образуется карбоксильной и a-аминогруппой соседних аминокислотных остатков (см. рис.): две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (—СООН) и аминогруппа (H2N—), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь.

Участок цепи, на котором находится концевая Н2N-группа, называют N-концевым, а противоположный ему — С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами  или олигопептидами (от олиго...), а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более аминокислот. Наиболее часто встречаются белки, включающие 100-400 аминокислотных остатков, но известны и такие, молекула которых образована 1000 и более остатками. Белки могут состоять из нескольких полипептидных цепей. В таких белках каждая полипептидная цепь носит название субъединицы.

               

11            ФУНКЦИИ: Биологические функции белков в клетке чрезвычайно многообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.1 Строительная функция- построены  оргонойды.2 Каталитическая- белки ферменты.( амилаза ,превращает крахмал в глюкозу )3 Энергетическая- белки могут служить источником энергии для клетки. При недостатке углеводовили жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.4  Транспортная – гемоглобин (переносит кислород )5 Сигнальная –рецепторные белки участвуют в обрзовании нервного импульса 6 Защитная – антитела белки 7 Яды ,гормоны- это тоже белки  (инсулин, регулирует потребление глюкозы)

12.           ФЕРМЕНТЫ (от лат. fermentum — закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе — белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.

13.           ВИТАМИНЫ (от лат. vita — жизнь), низкомолекулярные органические соединения различной химической природы, необходимые в незначительных количествах для нормального обмена веществ и жизнедеятельности живых организмов. Многие витамины — предшественники коферментов, в составе которых участвуют в различных ферментативных реакциях. Человек и животные не синтезируют витамины или синтезируют их в недостаточном количестве и поэтому должны получать витамины с пищей. Первоисточником витаминов обычно служат растения. Некоторые витамины образуются микрофлорой кишечника. Длительное употребление пищи, лишенной витаминов, вызывает заболевания (гипо- и авитаминозы). Многие витамины, используемые как лекарственные препараты, получают химическим или микробиологическим синтезом. Основные витамины: А1(ретинол ), В1(тиамин ), В2(рибофлавин ), В3(пантотеновая кислота), В6(пиридоксин), В12(цианкобаламин ), Вс(фолиевая кислота), С (аскорбиновая кислота ), D (кальциферолы), Е (токоферолы ), Н (биотин), РР (никотиновая кислота ), К1(филлохинон ).

14.           НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты — дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Последовательность нуклеотидов в нуклеиновых кислотах определяет их первичную структуру. Нуклеиновые кислоты присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению и передаче генетической информации, участвуют в механизмах, при помощи которых она реализуется в процессе синтеза клеточных белков. В организме находятся в свободном состоянии и в комплексе с белками (нуклеопротеиды).

15            ДЕЗОКСИРИБОНУКЛЕИНОВАЯ КИСЛОТА (ДНК), высокополимерное природное соединение, содержащееся в ядрах клеток живых организмов; вместе с белками гистонами образует вещество хромосом. ДНК — носитель генетической информации, ее отдельные участки соответствуют определенным генам. Молекула ДНК состоит из 2 полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов — нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований (аденин, гуанин, цитозин, тимин). Сочетания трех рядом стоящих нуклеотидов в цепи ДНК (триплеты, или кодоны) составляют код генетический. Нарушения последовательности нуклеотидов в цепи ДНК приводят к наследственным изменениям в организме — мутациям. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ. См. также —Уотсона Крика гипотеза.

16.           РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (РНК), высокомолекулярные органические соединения, тип нуклеиновых кислот. Образованы нуклеотидами, в которые входят аденин, гуанин, цитозин и урацил и сахар рибоза (в ДНК вместо урацила — тимин, вместо рибозы — дезоксирибоза). В клетках всех живых организмов участвуют в реализации генетической информации. Три основных вида: матричные, или информационные (мРНК, или иРНК); транспортные (тРНК); рибосомные (рРНК). У многих вирусов (т. н. РНК-содержащих) — вещество наследственности. Некоторые РНК (т. н. рибозимы) обладают активностью ферментов.

 

17.           АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ (происходит накопление энергии) и запас АТФ в клетках восстанавливается.

18.           КЛЕТКА, элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке — цитология.

ЭУКАРИОТЫ (эвкариоты) (от греч. eu — хорошо, полностью и karyon — ядро), организмы (все, кроме бактерий, включая цианобактерии), обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключен в хромосомах. Клетки эукариоты имеют митохондрии, пластиды и другие органоиды. Характерен половой процесс.

19.           КЛЕТКА, элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке — цитология.

ПРОКАРИОТЫ (от лат. pro — вперед, вместо и греч. karyon — ядро), организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром. Генетический материал в виде кольцевой цепи ДНК лежит свободно в нуклеотиде и не образует настоящих хромосом. Типичный половой процесс отсутствует. К прокариотам относятся бактерии, в т. ч. цианобактерии (сине-зеленые водоросли). В системе органического мира прокариоты составляют надцарство.

20.           ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой.

21.           КЛЕТОЧНЫЕ ВКЛЮЧЕНИЯ — скопления запасных питательных веществ: белков, жиров и углеводов.

22.           ГОЛЬДЖИ АППАРТ (Гольджи комплекс) (по имени К. Гольджи), органоид клетки, участвующий в формировании продуктов ее жизнедеятельности (различных секретов, коллагена, гликогена, липидов и др.), в синтезе гликопротеидов.

 

23            ЛИЗОСОМЫ (от лиз... и греч. soma — тело), клеточные структуры, содержащие ферменты, способные расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды. Участвуют во внутриклеточном переваривании веществ, поступающих в клетку путем фагоцитоза и пиноцитоза.

24.           МИТОХОНДРИЙ окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки (кристы), очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки «дыхательной цепи», отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий.

Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала (вследствие разницы в концентрации и зарядах). Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату (АДФ), что и приводит к синтезу АТФ.

Митохондрия, таким образом, исполняет в клетке роль «энергетической станции». Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей.

25.           ПЛАСТИДЫ (от греч. plastos — вылепленный), цитоплазматические органоиды растительных клеток. Нередко содержат пигменты, обусловливающие окраску пластиды. У высших растений зеленые пластиды — хлоропласты, бесцветные — лейкопласты, различно окрашенные — хромопласты; у большинства водорослей пластиды называют хроматофорами.

26.           ЯДРО — наиболее важная часть клетки. Оно покрыто двух­мембранной оболочкой с порами, через которые одни вещества про­никают в ядро, а другие поступают в цитоплазму. Хромосомы — ос­новные структуры ядра, носители наследственной информации о при­знаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с по­ловыми клетками — дочерним ор­ганизмам. Ядро — место синтеза ДНК, иРНК. рРНК.

28.           ФАЗЫ МИТОЗА  (профаза, мета-фаза, анафаза, телофаза) — ряд по­следовательных изменений в клет­ке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование верете­на деления, расположение хромо­сом в центре клетки, присоедине­ние к ним нитей веретена деления;в) расхождение хроматид к проти­воположным  полюсам  клетки (они становятся хромосомами);

г) формирование клеточной пере­городки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одинаковым набором хромосом (по 46 в материнской и дочерних клетках человека).

 

29.           МЕЙОЗ — особый вид деления первичных половых клеток, в ре­зультате которого образуются га­меты с гаплоидным набором хро­мосом. Мейоз — два последовате­льных деления первичной половой клетки и одна интерфаза перед первым делением.

4. Интерфаза — период актив­ной жизнедеятельности клетки, синтеза белка, липидов, углево­дов, АТФ, удвоения молекул ДНК и образования двух хроматид из каждой хромосомы.

30            ВИРУСЫ (от лат. virus — яд), мельчайшие неклеточные частицы, состоящие из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки (капсида). Форма палочковидная, сферическая и др. Размер 15 — 350 нм и более. Открыты (вирусы табачной мозаики) Д. И. Ивановским в 1892. Вирусы — внутриклеточные паразиты: размножаясь только в живых клетках, они используют их ферментативный аппарат и переключают клетку на синтез зрелых вирусных частиц — вирионов. Распространены повсеместно. Вызывают болезни растений, животных и человека. Резко отличаясь от всех других форм жизни, вирусы, подобно другим организмам, способны к эволюции. Иногда их выделяют в особое царство живой природы. Вирусы широко применяются в работах по генетической инженерии, канцерогенезу. Вирусы бактерий (бактериофаги) — классический объект молекулярной биологии.

Вирусы – очень мелкие неклеточные формы, различимые лишь в электронный микроскоп, состоят из молекул ДНК или РНК, окруженных молекулами белка.2. Кристаллическая форма вируса – вне живой клетки, проявление ими жизнедеятельности только в клетках других организмов Функционирование вирусов:1) прикрепление к клетке; 2) растворение ее оболочки или мембраны; 3) проникновение внутрь клетки молекулы ДНК вируса, 4) встраивание ДНК вируса в ДНК клетки; 5) синтез молекул ДНК вируса и образование множества вирусов; 6) гибель клетки и выход вирусов наружу; 7) заражение вирусами новых здоровых клеток.3. Заболевания растений, животных и человека, вызываемые вирусами: мозаичная болезнь табака, бешенство животных и человека, оспа, грипп, полиомиелит, СПИД, инфекционный гепатит и др. Профилактика вирусных заболеваний, повышение его невосприимчивости: соблюдение гигиенических норм, изоляция больных, закаливание организма.

31            ОБМЕН ВЕЩЕСТВ (метаболизм), совокупность всех химических изменений и всех видов превращений веществ и энергии в организмах, обеспечивающих развитие, жизнедеятельность и самовоспроизведение организмов, их связь с окружающей средой и адаптацию к изменениям внешних условий. Основу обмена веществ составляют взаимосвязанные процессы анаболизма и катаболизма, направленные на непрерывное обновление живого материала и обеспечение его необходимой энергией. Анаболические и катаболические процессы осуществляются путем последовательных химических реакций с участием ферментов. Для каждого вида организмов характерен особый, генетически закрепленный тип обмена веществ, зависящий от условий его существования. Интенсивность и направленность обмена веществ в клетке обеспечивается путем сложной регуляции синтеза и активности ферментов, а также в результате изменения проницаемости биологических мембран. В организме человека и животных имеет место гормональная регуляция обмена веществ, координируемая центральной нервной системой. Любое заболевание сопровождается нарушениями обмена веществ; генетически обусловленные нарушения обмена веществ служат причиной многих наследственных болезней.

32.           ЭНЕРГЕТИЧЕСКИЙ ОБМЕН В КЛЕТКЕ Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах.

Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО2 и Н2О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы.

Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО2 и Н2О.

Клеточное дыхание — это окисление органических веществ, приводящее к получению химической энергии (АТФ). Большинство клеток использует в первую очередь углеводы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносхаридов: Крахмал, Глюкоза (у растений) Гликоген (у животных) .

Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Однако в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например, при длительном голодании.

 

33            ЭНЕРГЕТИЧЕСКИЙ ОБМЕН – совокупность реакций окисления органических веществ в клетке, синтеза молекул АТФ за счет ос вобождаемой энергии. Значение энергетического обмена – снаб жение клетки энергией, которая необходима для жизнедеятельности

Этапы энергетического обмена: подготовительный, бескислородный, кислородный1) Подготовительный – расщепление в лизосомах полисаха-ридов до моносахаридов, жиров до глицерина и жирных кислот белков до аминокислот, нуклеиновых кислот до нуклеотидов. Рассеивание в виде тепла небольшого количества освобождаемой при этом энергии;2) бескислородный – окисление веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух молекул АТФ Осуществление процесса на внешних мембранах ми тохондрий при участии ферментов;3) кислородный – окисление кислородом воздуха простых органических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление ве ществ при участии ферментов, расположенных на кристах митохондрий. Сходство энергетического обмена в клетках растений, животных, человека и грибов – доказательство их родства.3. Митохондрий – «силовые станции» клетки, их отграниче ние от цитоплазмы двумя мембранами – внешней и внутренней. Увеличение поверхности внутрен ней мембраны за счет образования складок – крист, на которых расположены ферменты. Они ускоря ют реакции окисления и синтеза молекул АТФ. Огромное значение митохондрий – причина большого количества их в клетках организмов почти всех царств

34            БЕСКИСЛОРОДНЫЙ – окисление веществ без участия кислорода до более простых, синтез за счет освобождаемой энергии двух молекул АТФ Осуществление процесса на внешних мембранах ми тохондрий при участии ферментов;

35            КИСЛОРОДНЫЙ – окисление кислородом воздуха простых органических веществ до углекислого газа и воды, образование при этом 36 молекул АТФ. Окисление ве ществ при участии ферментов, расположенных на кристах митохондрий. Сходство энергетического обмена в клетках растений, животных, человека и грибов – доказательство их родства.

 

36            БИОСИНТЕЗ, образование необходимых организму веществ в живых клетках с участием биокатализаторов — ферментов. Обычно в результате биосинтеза из простых исходных веществ образуются более сложные соединения вплоть до гигантских молекул белков, нуклеиновых кислот, полисахаридов. В промышленности используют микробиологический синтез — биосинтез микроорганизмами антибиотиков, гормонов, витаминов, аминокислот и др.

37            ХЕМОСИНТЕЗ (от хемо... и синтез), процесс образования некоторыми бактериями органических веществ из диоксида углерода за счет энергии, полученной при окислении неорганических соединений (аммиака, водорода, соединений серы, закисного железа и др.). Хемосинтезирующие бактерии, наряду с фотосинтезирующими растениями и микробами, составляют группу автотрофных организмов. Хемосинтез открыт в 1887 С. Н. Виноградским.

38            ФОТОСИНТЕЗ — единственный биологический процесс, который идет с увеличением свободной энергии и прямо или косвенно обеспечивает доступной химической энергией все земные организмы (кроме хемосинтезирующих). Ежегодно в результате фотосинтеза на Земле образуется ок. 150 млрд. т органического вещества, усваивается 300 млрд. т СО2 и выделяется ок. 200 млрд. т свободного О2. Благодаря фотосинтетической деятельности первых зеленых организмов в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической эволюции.

Фотосинтез, уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород и др.) к акцептору — окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода.

Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического. Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы — животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли — обязаны своим существованием автотрофным организмам — растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере. Человечество все более осознает очевидную истину, впервые научно обоснованную К. А. Тимирязевым и В. И. Вернадским: экологическое благополучие биосферы и существование самого человечества зависит от состояния растительного покрова нашей планеты. ФОТОСИНТЕЗ — вид пластиче­ского обмена, который происхо­дит в клетках растений и некото­рых автотрофных бактерий. ФОТОСИНТЕЗ — процесс образования органических веществ из углекис­лого газа и воды, идущий в хлоропластах с использованием солнеч­ной энергии. Суммарное уравне­ние фотосинтеза:

39            ОБРАЗОВАТЕЛЬНЫЕ: Клетки образовательной ткани не больших размеров имеют тонкую оболочку и крупное ядро. Из них формируются другие виду тканей. (Камбий, точка роста)

ПИТАЮЩИЕ:  Клетки питающей ткани содержат хлоропласты и осуществляют процесс фотосинтеза (в листе), клетки питающей ткани корня всасывают из почвы воду и минеральные вещества. (лист, корень)

ЗАПАСАЮЩИЕ: В клетках запасающей ткани откладываются запасы питательных веществ (клубень, семя)

ПРОВОДЯЩИЕ: По клеткам проводящей ткани передвигается вода и растворенные в ней вещества  (древесина, луб)

ПОКРОВНЫЕ: Клетки покровной ткани защищают внутренние ткани от высыхания, температурных перепадов и различных повреждений.  (кожица, пробка)

МЕХАНИЧЕСКАЯ: Клетки механической ткани придают прочность всем органам растения. (волокна луба)

Межклеточное вещество отсутствует.

40.           ТКАНИ, в биологии — системы клеток, сходных по происхождению, строению и функциям. В состав тканей входят также тканевая жидкость и продукты жизнедеятельности клеток. Ткани животных — эпителиальная, все виды соединительной, мышечная и нервная; ткани растений — образовательная, основная, защитная и проводящая.

41            СИСТЕМА ОРГАНОВ. Различные ткани соединяются между собой и образуют органы – части тела, имеющие определенную форму, строение, местно и выполняющие одну или несколько функций. Рука, сердце, почки, печень, селезенка – все это органы. Одна из тканей, входящих в состав органа, определяет его гланвую функцию, другие – соединительная ткань, содержащая сосуды и нервы, помогает в осуществлении этой функции, образуя единую физиологическую систему.

Часть органов расположена в полостях тела, поэтому их называют внутренними.

Органы, совместно выполняющие общие функции, составляют опорно-двигательную, кровеносную, дыхательную, пищеварительную, выделительную, нервную системы и систему органов размножения (половую). Системы органов работают не изолированно, а объединяются для достижения полезного организму результата. Такое временное объединение органов и систем органов называют функциональной системой. Например, быстрый бег может быть обеспечен функциональной системой, включающей в работу большое число различных органов и их систем: нервную систему, органы движения, дыхания, кровообращения, потоотделения и др.

Теорию функциональности систем разработал русский физиолог академик П.К. Анохин.

Итак, организм человека устроен очень сложно: он состоит из систем органов, каждая система органов  - из различных органов, каждый орган – из нескольких тканей, ткань – из множества сходных клеток и межклеточного вещества.

7.8.          УГЛЕВОДЫ, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы

 

 

 

Внимание! Представленная Работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru