База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

9-этажный жилой дом со встроенными помещениями — Архитектура

1.

1.1

            Основным назначением архитектуры всегда являлось создание необходимой для существования человека жизненной среды, характер и комфортабельность которой определялись уровнем развития общества, его  культурой, достижениями науки и техники. Эта жизненная среда, называемая архитектурой, воплощается в зданиях, имеющих внутреннее пространство, комплексах зданий и сооружений, организующих наружное пространство - улицы, площади и города.

            В современном понимании архитектура - это искусство проектировать и строить здания, сооружения и их комплексы. Она организует все жизненные процессы. По своему эмоциональному воздействию архитектура - одно из самых значительных и древних искусств. Сила ее художественных образов постоянно влияет на человека, ведь вся его жизнь проходит в окружении архитектуры. Вместе с тем, создание производственной архитектуры требует значительных затрат общественного труда и времени. Поэтому в круг требований, предъявляемых к архитектуре наряду с функциональной с функциональной целесообразностью, удобством и красотой входят требования технической целесообразности и экономичности. Кроме рациональной планировки помещений, соответствующим тем или иным функциональным процессам удобство всех зданий обеспечивается правильным распределением лестниц, лифтов, размещением оборудования и инженерных устройств (санитарные приборы, отопление, вентиляция). Таким образом, форма здания во многом определяется функциональной закономерностью, но вместе с тем она строится по законам красоты.

            Сокращение затрат в архитектуре и строительстве осуществляется рациональными объемно - планировочными решениями зданий, правильным выбором строительных и отделочных материалов, облегчением конструкции, усовершенствованием методов строительства. Главным экономическим резервом в градостроительстве является повышение эффективности использования земли.

1.1.1

            Согласно задания на дипломный проект на тему: 9-этажный 744-квартирный жилой дом с встроенными парикмахерской, Бюро путешествий и магазином исходными данными являются:

1) 

2) 

3) 

            Жилой дом расположен в 11-ом квартале города Северск Томской области, главным фасадом выходит на главный проспект города - проспект Коммунистический и ул. Солнечная. Климат региона резко континентальный, относится к 1-му климатическому району с минимальной зимней температурой   - 45°C. Площадка строительства попадает на территорию, застроенную ранее частными домами.

            Жилой дом относится к многоэтажным жилым домам секционного типа:

·     

·     

·     

·      400 кг.

·     

·     

·     

·     

·     


1.2

1.2.1Общее положение

            По мере развития типизации проектирования и индустриализации строительство жилых зданий приобрело огромные масштабы. Решается важнейшая задача социальной значимости - обеспечить каждую семью отдельной квартирой. При этом жилищное строительство осуществляется в комплексе с учреждениями повседневного культурно бытового обслуживания. Границей микрорайонов являются улицы. Поэтому при проектировании жилого дома предусматриваются широкие улицы, тротуары, обеспечивающие свободный проход людей, а также в случае пожара проезд пожарных машин. Для уменьшения проезда автомобилей внутри квартала, а следовательно и уменьшения загазованности атмосферы со стороны пр. Коммунистический и ул. Солнечной предусмотрены стоянки для личного автомобильного транспорта жителей микрорайона.

            В целях экономии земельных участков города запроектирован 9-этажный жилой дом секционного типа. Данный дом расположен на основном пути перемещения жителей самого большого в городе микрорайона, а также стоящего на основной автомагистрали города, поэтому для удобства жителей в данном доме запроектирована парикмахерская, Бюро путешествий и магазин. Этот дом дополняет ансамбль въезда в город своим зеркальным отображением существующего на другой стороне улицы дома.

            Для удобства передвижения людей предусмотрены проходы между секциями, которые также являются пожарными проездами. В проектируемом доме каждая квартира состоит из следующих помещений:

·    

·    

·    

·    

·    

·    

            Все жилые комнаты освещены естественным светом в соответствии с требованиями СНиП 1:5,4, комнаты в квартирах имеют отдельные входы, высота помещения - 2,5 м. Кухня оборудована вытяжной естественной вентиляцией, мойкой, электроплитой. Стены возле кухонного оборудования облицовывающая глазурованной плиткой, остальные - моющимися обоями. Пол в квартирах покрыт линолеумом по растворной стяжке. Ванна и туалет выполнены в железобетонной санитарной кабине.

            Находясь в 1-й климатической зоне, тамбур выполнен двойным с утепленными входными дверьми и с установкой приборов отопления как в тамбуре, так и на лестничной клетке.

            Лестничная клетка запланирована как внутренняя повседневной эксплуатации, из сборных железобетонных элементов. Во входном узле лестницы из отдельных бетонных наборных ступеней. Лестница двухмаршевая с опиранием на лестничные площадки. Уклон лестниц - 1:2. На лестничной клетке между 2 и 3 этажом предусмотрена комната для персонала с обивкой двери и дверной коробки оцинкованным железом по асботкани. С лестничной клетки имеется выход на кровлю по металлической лестнице, оборудованной огнестойкой дверью. Лестничная клетка имеет искусственное и естественное освещение через оконные проемы. Все двери по лестничной клетке и в тамбуре открываются в сторону выхода из здания. Ограждение лестниц выполняется из металлических звеньев, а поручень облицован пластмассой. Для вертикальных коммуникаций предусмотрена лифтовая сборная железобетонная шахта с монтажом лифтовой установки грузоподъемностью = 400 кг. Машинное отделение лифта помещается на кровле, что позволяет уменьшить длину ведущих канатов почти в три раза, упростить кинематическую схему лифта, уменьшить нагрузки на несущие конструкции здания, отказаться от устройства специального помещения для блоков. Таким образом стоимость лифта и эксплуатационные расходы значительно сокращаются. Однако такое верхнее расположение машинного отделения менее выгодно по аккустико -  шумовым соображениям.


1.3

            В состав помещений многоэтажного жилого дома кроме основного элемента - квартир запроектированы встроенные помещения:

·    

·    

·    

            Положительная сторона такого решения - это максимальное приближение к жилой зоне объектов соцкультбыта, что ведет к комфортности обслуживания населения, сокращает затраты на строительство, а также на одновременную сдачу и жилья и соцкультбыта. С другой стороны находящиеся в здании магазины, парикмахерские и другие встроенные помещения концентрируют людские потоки, автотранспорт; своей деятельностью повышают шумы и непроизвольно засоряют прилегающую территорию отходами своего производства.

            Многоэтажные жилые дома являются основным типом жилища в городах нашей страны. Такие дома позволяют рационально использовать территорию, сокращают протяженность инженерных сетей, улиц, сооружений городского транспорта. Значительное увеличение плотности жилого фонда (количество жилой площади (м2), приходящейся на 1 га застраиваемой территории) при многоэтажной застройке дает ощутимый экономический эффект. Кроме того, их высотная композиция способствует созданию выразительного силуэта застройки. Правильный выбор этажности застройки определяет ее экономичность.

            В домах с количеством этажей более пяти в связи с обязательным устройством лифтов и мусоропроводов увеличивается строительная стоимость 1 м2 жилой площади, а затем и эксплуатационные расходы по дому. В то же время применение в застройке только многоэтажных домов приводит к однообразию, потере масштабности и даже не позволяет достигнуть сверхвысокой плотности застройки, так как при увеличении этажности увеличиваются и санитарные разрывы между зданиями. Поэтому города целесообразно застраивать не только многоэтажными домами, но и домами средней этажности.

1.3.1Фундаменты

            Под жилой дом с встроенными помещениями запроектированы свайные фундаменты с L=7 м, по свайному основанию запроектирован монолитный армированный ростверк. По монолитному ростверку фундамент выполняется из сборных бетонных блоков (см. чертеж 3).

            При устройстве свайных оснований под фундаменты:

·    

·    

·    

·    

·    

            Отрицательной стороной свайного фундамента является трудоемкость при забивании свай.

1.3.2Наружные стены

            Наружные стены здания запроектированы из красного кирпича М-100 с утеплителем из жесткой минераловатной плиты и облицованные красным облицовочным кирпичом (см. схему 5).

Материал утепляющего слоя

  кг/м2

1

м

Вт/м2 Со

R0пр

R0тр

м2Со/Вт

Минераловатные плиты

  

  100

  0,25

   0,77

  0,07

  2,74

 

 3,595

Расчет теплопроводности стены:

tН = - 40°C


         n(tН - tВ)          1·(20-(- 40))

RO = ¾¾¾¾    =  ¾¾¾¾¾¾      = 1,72 м2С°/Вт

          DtН              4·8,7

ГСОП = (tВ - tОП)+ZОП = 20-(8,8) ·234 = 627,2

по ГСОП RЭС = 2,05

Параллельный поток

участок 1:

       0,77

R = ¾¾ = 0,95

       0,81

F = 0,12·1 = 0,12  м2

участок 2:

       0,12    0,25     0,38

R = ¾¾ + ¾¾ + ¾¾ = 4,19

       0,81    0,07     0,81

F = 1,05·1 = 1,05 м2

        2 · F1l1 +F1l2             2·0,12+1,05

R = ¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾¾ = 2,56

            FI     FII            2· (0,12/0,85)+1,05/4,19

       2· ¾ + ¾

            RI    RII

Перпендикулярный поток

участок 1

       0,12

R = ¾¾ = 0,148

       0,81

            Для установления термического сопротивления слоя номер 2 предварительно вычисляем среднюю величину коэффициента теплопроводности с учетом площадей и утеплителя, выполненного из минераловатной плиты.

           2· l1 · F1+ l2 · F2      2·0,81·0,12+0,07·1,05

СР = ¾¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾¾ = 0,228

                 2·F1 + F2                      2·0,12+1,05

                     d         0,25

Тогда: R = ¾¾ = ¾¾¾ = 1,09

                   l СР     0,272

       d      0,38

R = ¾ = ¾¾ = 0,469

       l      0,81

RВ = R1 +R2 +R3 = 0,148+1,09+0,469 = 1,71

         Rа+2·Rв        2,56+2·1,71

RС = ¾¾¾¾¾ = ¾¾¾¾¾¾ = 1,99

               3                       3

RЭС = 2,05 < Rо = 2,15

            Принятые размеры толщины стены удовлетворяют требованиям теплотехнического расчета стены.

            Здание выполнено из кирпичной кладки, выглядит массивно и капитально, придавая зданию тектоническую выразительность. Зданиям, выполненным из кирпича сравнительно легко придавать индивидуальность фасадов и внутренней планировки. Стены из кирпича с горизонтальными и вертикальными выступами нишами и прочими объемными элементами способствуют восприятию их трехмерности, и увеличивают степень долговечности и огнестойкости здания. Материал, из которого изготавливают кирпич сравнительно дешевый.

            Основной недостаток кирпичной кладки стен - трудоемкость производства работ и долгий срок возведения объектов строительства.

1.3.3Перекрытия и покрытия

            Перекрытия и покрытия запроектированы из типовых сборных пустотных железобетонных плит с предварительным напряжением арматуры. Применение сборных плит перекрытий и покрытий увеличивает скорость возведения зданий. Кровля запроектирована из трехслойного гидроизоляционого ковра из рубероида и защитным 5 см слоем асфальтовой стяжки, что в 1,5 раза менее трудоемко, чем скатные чердачные крыши и на 10-15% дешевле их.

            Расчет толщины утеплителя перекрытий и покрытий

а) жилой части здания:

Наименование

  кг/м2

CО

S

R

Железобетонная плита перекрытия

2580

0,22

0,84

2,04

16,95

0,1078

Утеплитель - керамзит

800

0,32

0,84

0,23

3,60

1,4

Цементно - песчаная стяжка

1800

0,05

0,84

0,93

11,09

0,053

         n(tН - tВ)          0,9·(20-(- 40))

RO = ¾¾¾¾    =  ¾¾¾¾¾¾¾      = 1,55 м2С°/Вт

          DtН               4·8,7

         d

Rn = ¾

         l


         1                1      1                       d                     1

Ro = ¾ + Rк +  ¾  = ¾ + 0,1078 + ¾¾ + 0,053 + ¾

         aВ             aН      8,7                  0,23                 23

                                 d1      d2      d3     0,22         d2       0,053

Rк = R1 + R2 + R3 = ¾ +  ¾ +  ¾ = ¾¾¾ + ¾¾ +  ¾¾¾

                                 l1     l2      l3      2,04      0,23       0,93

d2 = (Ro-Rв-R1 -R3 ) · aН

d2 = (1,55-0,1149-0,1078-0,05376-0,04347) · 0,23=0.322 м

RО ³ RОТР

          1              1        1                      0,32                 1

Ro = ¾ + Rк + ¾ = ¾¾ + 0,1078 + ¾¾ + 0,053 + ¾

         aВ            aН     8,7                     0,23                23

Ro = 1,55 ³ Ro = 1,55,   где:

p - плотность материала утеплителя (кг/м3)

a - коэффициент теплопроводности (Вт/мС°)

d - толщина слоя (м)

n - коэффициент, применяемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху

tВ - расчетная температура внутреннего воздуха (°С)

tН - расчетная температура наружного воздуха (°С)

DtН - нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции.

aВ - коэффициент теплопередачи внутренней поверхности

RК - термическое сопротивление ограждающей конструкции

Толщина утеплителя составляет 32 см.

б) встроенные помещения:

Наименование

CО

S

R

Железобетонная плита перекрытия

2580

0,22

0,84

2,04

16,95

0,1078

Пароизоляция 1 слой рубероида

600

0,01

1,68

0,17

3,53

0,

Утеплитель - керамзит

800

0,32

0,84

0,23

3,60

1,4

Цементно - песчаная стяжка

1800

0,05

0,84

0,93

11,09

0,053

Асфальт 5 см

2100

0,05

1,68

1,05

16,43

0,0476

         n(tН - tВ)          1·(20-(- 40))

RO = ¾¾¾¾    =  ¾¾¾¾¾¾      = 1,72 м2С°/Вт

          DtН              4·8,7

         d

Rn = ¾  ;         RО ³ RОТР

         l

         1               1       1                         d         1

Ro = ¾ + Rк + ¾ = ¾¾ + 0,3894 + ¾¾ +  ¾

         lВ             lН     8,7                     0,23     23

                                          d1    d2     d3    d4

Rк = R1 + R2 + R3 + R4 = ¾ + ¾ + ¾ + ¾

                                         l1    l2    l3     l4

d2 = (Ro -Rв -R1 -R3 -R4)  · l2 = (1,72-0,1149-0,3314-0,04347) · 0,23=0.28

Толщина утеплителя составляет 28 см.

1.3.4Перегородки

            Перегородки применяются сборными из гипсобетона толщиной 8 см, изготавливаемых на заводах поставщика. Применение сборных перегородок ускоряет процесс строительства и уменьшает мокрые процессы на строительной площадке. Но гипсовые перегородки довольно хрупкие и во время транспортировки, хранении и монтаже могут разрушится из-за неумелого обращения.

1.3.5Окна и витражи - витрины

            Окна и витражи витрины в значительной мере определяют степень комфорта в здании и его архитектурно - художественное решение. Окна и витражи подобраны по ГОСТ-у, в соответствии с площадями освещаемых помещений. Верх окон максимально приближен к потолку, что обеспечивает лучшую освещенность в глубине комнаты. Основы витражей т.е. коробки и переплеты выполняются из алюминия, что в 2,5 - 3 раза легче стальных, они коррозийностойкие и декоративные. Деревянные конструкции окон чувствительны к изменению влажности воздуха и подвержены гниению, в связи с чем их необходимо периодически окрашивать.

1.3.6Двери

            В данном дипломном проекте размеры дверей приняты по ГОСТ-у двери, как внутренние внутри квартир, кабинетах так и наружные усиленные. Двери применены как однопольные, так и двупольные, размером: 2,1 м высотой и 0,9; 0,8; 0,7 м шириной. Для обеспечения быстрой эвакуации все двери открываются наружу по направлению движения на улицу исходя из условий эвакуации людей из здания при пожаре. Дверные коробки закреплены в проемах к антисептированым деревянным пробкам, закладываемым в кладку во время кладки стен. Для наружных деревянных дверей и на лестничных клетках в тамбуре - коробки устраивают с порогами, а для внутренних дверей - без порога. Дверные полотна навешивают на петлях (навесах), позволяющих снимать открытые настежь дверные полотна с петель - для ремонта или замены полотна двери. Во избежание нахождения двери в открытом состоянии или хлопанья устанавливают специальные пружинные устройства, которые держат дверь в закрытом состоянии и плавно возвращают дверь в закрытое состояние без удара. Двери оборудуются ручками, защелками и врезными замками. Входные тамбурные двери в парикмахерской, Бюро путешествий, магазине выполнены из двухслойного штампованного алюминия рифленой поверхности. Коробки дверей выполняются из штампованных алюминиевых профилей с креплением анкерами к стенам.

1.3.7Полы

Полы в жилых и общественных зданиях должны удовлетворять требованиям прочности, сопротивляемости износу, достаточной эластичности, бесшумности, удобства уборки. Конструкция пола рассмотрена как звукоизолирующая способность перекрытия плюс звукоизоляция конструкции пола. Покрытие пола в квартирах принято из линолеума на теплоизолирующем основании. Стяжка выполняется из раствора по керамзитовой засыпке, являющейся звукоизоляционным слоем. Во встроенных помещениях приняты мозаичные полы.

            Положительными сторонами данных полов является их гигиеничность и бесшумность. Отрицательные стороны - большая трудоемкость, что также увеличивает срок строительства.

1.3.8Отделка

            Наружная отделка: цокольная часть из рельефных цокольных блоков заводского изготовления. Отделка стен - из облицовочного красного кирпича. Оконные и дверные блоки окрашиваются масляными красками или эмалями теплых тонов.

            Внутренняя отделка: в квартирах стены обклеиваются обоями после штукатурки кирпичных стен. Кухни обклеиваются моющимися обоями, а участки стен над санитарными приборами облицовываются глазурованной плиткой. В санкабинах полы из керамической плитки. Стены белятся мелпастой и устраивается панель из окраски масляными или эмалевыми красками. Встроенные помещения отделываются согласно таблицы.

1.3.9Отопление

            Отопление и горячее водоснабжение запроектировано из магистральных тепловых сетей от УТ-1, с нижней разводкой по подвалу. Приборами отопления служат конвектора. На каждый блок - секцию и каждый встроенный блок выполняется отдельный тепловой узел для регулирования и учета теплоносителя. Магистральные трубопроводы и трубы стояков, расположенные в подвальной части здания изолируются и покрываются алюминиевой фольгой.

1.3.10  Водоснабжение

            Холодное водоснабжение запроектировано от внутриквартального коллектора водоснабжения с двумя вводами. Вода на каждую секцию подается по внутридомовому магистральному трубопроводу, расположенного в подвальной части здания, который изолируется и покрывается алюминиевой фольгой. На каждую блок - секцию и встроенный блок устанавливается рамка ввода.

            Вокруг дома выполняется магистральный пожарный хозяйственно - питьевой водопровод с колодцами, в которых установлены пожарные гидранты.

1.3.11Канализация

            Канализация выполняется внутридворовая с врезкой в колодцы внутриквартальной канализации. Из каждой секции и каждого встроенного помещения выполняются самостоятельные выпуска хозфекальной и дождевой канализации.

1.3.12Энергоснабжение

            Энергоснабжение выполняется от городской подстанции с запиткой по две секции двумя кабелями - основной и запасной. Встроенные помещения запитываются отдельно, через свои электрощитовые. Все электрощитовые расположены на первых этажах.

1.3.13  Радио

            На каждой секции устанавливаются радиостойки с устройством радиофидеров от соседних домов, расположенных вокруг строящихся зданий. В каждой квартире имеются две радиоточки - на кухне и в зале, а также в кабинетах встроенных помещений.

1.3.14  Телевидение

            На всех блок - секциях монтируются телевизионные антенны, с их ориентацией на телецентр и установкой усилителя телевизионного сигнала. Все квартиры подключаются к антенне коллективного пользования.

1.3.15Телефонизация

            К каждой блок - секции дома и встроенным блокам из внутриквартальной телефонной сети подводится телефонный кабель и в зависимости от возможности городской телефонной станции осуществляется абонентов к городской телефонной сети.

1.3.16Мусоропровод

            Мусоропровод внизу оканчивается в мусорокамере бункером - накопителем. Накопленный мусор в бункере высыпается в мусорные тележки и погружается в мусоросборные машины и вывозится на городскую свалку отходов. Стены мусорокамеры облицовываются глазурованной плиткой, пол металлический. В мусорокамере предусмотрены холодный и горячий водопровод со смесителем для промывки мусоропровода, оборудования и помещения мусорокамеры. Мусорокамера оборудована трапом со сливом воды в хозфекальную канализацию. В полу предусмотрен змеевик отопления. В верху мусоропровод имеет выход на кровлю для проветривания мусорокамеры и через мусороприемные клапана удаление застоявшегося воздуха из лестничных клеток, а также дыма в случае пожара. Вход в мусорокамеру отдельный, со стороны улицы.


1.4

            Экономические показатели жилых зданий определяется их объемно планировочными и конструктивными решениями, характером и организацией санитарно - технического оборудования. Важную роль играет запроектированное в квартире соотношение жилой и подсобной площадей, высота помещения, расположение санитарных узлов и кухонного оборудования. Проекты жилых зданий характеризуют следующие показатели:

·       

·        2),

·        2),

·        2),

·        2),

К - отношение жилой площади к общей площади, характеризует рациональность использования площадей.

К - отношение строительного объема к общей площади, характеризует рациональность использования объема.

            Строительный объем надземной части жилого дома с неотапливаемым чердаком определяют как произведение площади горизонтального сечения на уровень первого этажа выше цоколя (по внешним граням стен) на высоту, измеренную от уровня пола первого этажа до верхней площади теплоизоляционного слоя чердачного перекрытия.

            Строительный объем подземной части здания определяют как произведение площади горизонтального сечения по внешнему обводу здания на уровне первого этажа, на уровне выше цоколя, на высоту от пола подвала до пола первого этажа.

            Строительный объем тамбуров, лоджий, размещаемых в габаритах здания, включается в общий объем.

            Общий объем здания с подвалом определяется суммой объемов его подземной и надземной частей.

            Площадь застройки рассчитывают как площадь горизонтального сечения здания на уровне цоколя, включая все выступающие части и имеющие покрытия (крыльцо, веранды, террасы).

            Жилую площадь квартиры определяют как сумму площадей жилых комнат плюс площадь кухни свыше 8-ми м2.

            Общую площадь квартир рассчитывают как сумму площадей жилых и подсобных помещений, квартир, веранд, встроенных шкафов, лоджий, балконов, и террас, подсчитываемую с понижающими коэффициентами:

Þ    для лоджий - 0,5,

Þ    для балконов и террас - 0,3.

            Площадь помещений измеряют между поверхностями стен и перегородок в уровне пола. Площадь всего жилого здания определяют как сумму площадей этажей, измеренных в пределах внутренних поверхностей наружных стен, включая балкон и лоджии. Площадь лестничных клеток и различных шахт также входит в площадь этажа. Площадь этажа и хозяйственного подполья в площадь здания не включается (см. схему ).

1.4.1

Жилой дом:

Наименование

Показатель

V стр. подз. [м3]

9840

V стр. надз. [м3]

177123,2

V общ. [м3]

186963,2

S подв. [м2]

3644

S жил. [м2]

25024,7

S общ. [м2]

41224

S застр. [м2]

7626,4

S здан. [м2]

46321,5

K1 = S жил./ S жил.

0,603

K2 = V стр./S жил. [м32]

4,530

Встроенные помещения:

Наименование

Показатель

V стр. [м3]

16390,44

S общ. [м2]

5007,84

S пол. [м2]

2343,72

S всп. [м2]

6684,4

S раб. [м2]

1504,26

S норм. [м2]

2072,4

S заст. [м2]

2432,4

K1 = Sнор./ Sобщ.

0,413

K2 = Vстр./Sобщ. [м32]

3,27

Генеральный план:

Наименование

Показатель

S озел. [м2]

13449

S заст. [м2]

10058

S дор. [м2]

6568

S уч. [м2]

30076

K заст.

0,334

K озел.

0,447


1.5

            Жилой дом располагается в 11-м микрорайоне г Северска, главным фасадом выходит на проспект Коммунистический и на улицу Солнечная. С проспекта Коммунистического запроектированы площадки для стоянки автомобилей, для того, чтобы уменьшить поток автотранспорта в жилой квартал. Дом запроектирован в меридиональном направлении, что обеспечивает меньшее продувание холодными ветрами дворовой части и улучшает микроклимат квартала. Между домом и площадками для стоянки автомобилей запроектированы посадки деревьев и кустарников, что является шумопоглощением и улучшает экологическое равновесие воздушной среды. В жилом доме запроектированы встроенные помещения:

·    

·    

·    

            Вдоль главного фасада запроектированы широкие тротуарные дорожки, которые в случае пожара используются как подъездные пути для пожарных машин. Вдоль тротуара запроектированы фонари. Автодороги освещаются мачтами, с укрепленными на них светильниками. Между домами предусмотрены проезды для прохода и проезда людей.


1.6

1. 

2. 

3. 

4. 

5. 


2.

2.1

            Основным направлением экономического и социального развития города предполагается значительное увеличение объемов капитального строительства, так как возведение жилых зданий сопровождается сооружением общественных зданий, школ, предприятий общественного питания и бытового обслуживания. Уменьшение затрат на устройство оснований и фундаментов от общей стоимости зданий и сооружений, может дать значительную экономию материальных средств. Однако, добиваться снижения этих затрат необходимо без снижения надежности, т.е. следует избегать возведения недолговечных и некачественных фундаментов, которые могут послужить причиной частичного или полного разрушений зданий и сооружений. Необходимая надежность оснований и фундаментов, уменьшения стоимости строительных работ в условиях современного градостроительства зависит от правильной оценки физико - механических свойств грунтов, слагающих основания, учета его совместной работы с фундаментами и другими надземными строительными конструкциями. Проектирование свайных фундаментов разрабатывается на основе материалов инженерно - геологических изысканий.

            В данном проекте рассчитываем висячие сваи - это такие сваи, у которых под нижними концами залегают сжимаемые грунты и нагрузка передается, как через нижний конец, так и по боковой поверхности сваи. Длина сваи назначается с учетом глубины заложения подошвы ростверка. Она должна быть не менее 0,3м при действии центрально - сжимающей нагрузки. Геометрические размеры ростверка в плане зависят от размеров опирающихся на него конструкций, и от количества свай в свайном фундаменте. Расстояние между осями забивных висячих свай должно быть не менее 3d (d-сторона квадратного поперечного сечения сваи).

            Положительные стороны свайного фундамента:

·    

·    

·    

            Отрицательные - трудоемкость при забивании свай.

2.2

            Данное жилое здание имеет сложную конфигурацию в плане. Девятиэтажный 744-квартирный жилой дом имеет встроенные помещения:

·    

·    

·    

            Жилой дом расположен в центре города, главным фасадом выходит на главный проспект города - пр. Коммунистический и улицу Солнечная. Площадка строительства попадает на территорию, застроенную ранее частными домами. Запроектированы следующие конструкции:

·    

·    

·     400 кг.

2.3

            Исследуемую площадку пересекает ряд инженерных коммуникаций: водопровод, канализация, теплотрассы. Поверхность участка сравнительно ровная, с общим понижением рельефа в южном и юго-восточном направлении. Абсолютные отметки поверхности изменяются в пределах от 86,3 м до 92,85 м. Максимальная разность отметок в целом по участку составляет 6,55 м.

            Геологический разрез участка был составлен на основе инженерно- геологических изысканий, которые были сделаны по скважине N 1.

·     0,5 м. По составу насыпной грунт неоднородный, сложен преимущественно песком, реже суглинком с примесью почвы гравия. Среднее содержание примесей - 10%. По степени уплотнения от собственного веса - смешавшийся.

·     1,3 м.

·     2,5 м. Слой представлен коричневым суглинком, является тугопластичным.

·     3,4 м. На глубине 4,5 м находится прослойка суглинка. В этом слое проходит уровень подземных вод на глубине 5,4 м от поверхности.

·     6,7 м. Слой представлен коричневым суглинком, текучим. Мощность слоя 0,8 м.

·     7,5 м. Физико - механические свойства грунтов площадки строительства приведены в таблице.


Сводная таблица расчётных значений физико - механических характеристик грунтов

Наименование

Мощ-

Плотность

Удельный вес

Показатели

Показатели

Коэфф.

степень

Угол вн.

Сцеп-

Модуль

грунта

ность

частиц

грунта

сухого

текучести

текучести

порист.

влажн.

трения

ление

деформ

слоя

rs

r

rd

gs

g

грунта gd

Wp

WL

Ip

IL

e

Sr

j

C

E

Песок

1,7

2,69

1,86

1,65

26,9

18,6

16,5

-

-

-

-

0,63

0,56

33

0,01

21,5

Суглинок

2,5

2,71

2,04

1,76

27,1

20,4

17,6

21

13

8

0,38

0,54

0,8

24

0,022

6

Песок

5,9

2,66

1,9

1,7

26,6

19

17

-

-

-

-

0,565

0,56

33

0,01

6

Суглинок

6,7

2,74

2,06

1,73

27,4

20,6

17,3

21

13

8

0,38

0,58

0,8

21

0,021

18

Песок

15

2,68

1,82

1,64

26,8

18,2

16,4

-

-

-

-

0,634

0,46

33

0,01

21,7


2.4

            Для дальнейшего расчета фундамента необходимо определить нагрузки.

2.4.1

Покрытия

Чердачные перекрытия с утеплителем

Межэтажные перекрытия

Перегородки

Вес парапета

Кирпичная кладка

Вес плиты лоджии

2,54 кН/м2

3,80 кН/м2

3,60 кН/м2

1,00 кН/м2

1,00 кН/м2

18,00 кН/м2

10,60 кН/м2

2.4.2

На 1 м2 проекции кровли от снега

На 1 м2 проекции чердачного перекрытия

На 1 м2 проекции межэтажного перекрытия

1,50 кН/м2

0,75 кН/м2

1,50 кН/м2

            Определим нагрузку на наружную систему. Грузовая площадь между осями оконных проемов:

 А = 3,125·3=9.375 м2, где:

 3,125 - расстояние между осями,

 3 - половина расстояния в частоте между стенами.

            Нормативные нагрузки на 3,125 м длины фундамента на уровне спланированной отметки земли (кН):

2.4.3

Покрытия

2,54 · 9,375

23,8125кН

Чердачного перекрытия

3,8·9,375

35,625 кН

9-ти межэтажных перекрытий

9·3,6 · 9,375

303,75 кН

Перегородок на 9-ти этажах

9 · 1 · 9,375

84,375 кН

Карстена выше чердачного перекрытия:

0,77 · 1,5 · 6,3 · 1,8 · 3,125

40,93 кН

Стена со 2-го этажа и выше на длине 3,125 м за вычетом оконных проемов

0,77· (3,125·2,8-1,484·1,35) ·1,8·10·8

748,06 кН

Вес системы 1-го этажа

0,77· (3,125·2,8)-1,8·10

121,275 кН

Вес от перекрытий подвала

3,125·3,6·6,6·1

74,25 кН

Вес от покрытий парикмахерской

3,125·3,45·6,1·1

65,76 кН

Вес от лоджий

8·10,6

84,8 кН

Итого:

1582,646кН


2.4.4

На кровлю от снега

1,5 · 9,375

14,06 кН

Чердачные перекрытия

9,375 · 0,75

7,031 кН

 На 9-ти межэтажных перекрытиях с коэффициентом  jn1 = 0,489

9,375 · 10 · 0,489 · 1,5

68,864 кН

            Неодновременное загружение 6-ти этажей учитываем снижающим коэффициентом по формуле:

jn1 = 0,3+0,6/Ön, где:

 n - число перекрытий, от которых нагрузка передается на основание.

jn1 = 0,3+0,6/Ö9 = 0,4897

Итого: 89,9575 кН

            Условия несущей способности грунтов основания одиночной сваи или в составе свайного фундамента имеет вид:

           Fd

N   £   ¾  ,  где:

           ¡K 

N - расчетная нагрузка, передаваемая от сооружения на одиночную сваю,

Fd - несущая способность сваи по грунту,

¡K - коэффициент надежности, назначаемый в зависимости от метода          определения несущей способности сваи по грунту.

            Подберем длину забивной сваи и определим ее несущую способность по грунту.

            Из анализа грунтовых напластований можно сделать вывод, что пластичная глина не обладает достаточным сопротивлением, а слой супеси имеет малую толщину. В качестве несущего слоя целесообразно принять слой "пылевитый песок". Тогда длина забивной сваи, с учетом заглубления в несущий слой не менее 1 м, составляет L = 0,3+2,6+0,8+4,3+1 = 9 м. Принимаем забивную сваю типа С10-30 по ГОСТ 19804.1-79 длиной 10 м, сечением 30 х 30 см, свая при этом будет висячей. Погружение сваи будет осуществляться дизельным молотом. Несущая способность висячей забивной сваи определяется в соответствии со СНиП 2.02.03-85 как сумма сил расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле:

Fd = ¡C · (¡CR·R·A+U·å ¡CF · fi · hi ), где

¡C - коэффициент работы сваи в грунте, принимаемый равным 1,

¡CR, ¡CF - коэффициенты условий работы соответственно под нижним концом и на боковой поверхности сваи, принимаемые для забивных свай, погружаемых дизельными молотами без лидирующих скважин, равными 1,

A - площадь опирания сваи на грунту, принимаемая равной площади поперечного сечения сваи. A = 0,3·0,3 = 0.09 м2

U - наружный периметр поперечного сечения сваи 0,3·4=1.2 м,

R - расчетное сопротивление грунта под нижним концом сваи.

            Расчетное сопротивление грунта зависит от вида и состояния грунта и от глубины погружения сваи.

                     1650 - 1500

R = 1500 +  ¾¾¾¾¾¾ · (13 - 10) = 1590 [кПа]

                        15 -10

f- расчетное сопротивление i-го слоя грунта, соприкасающегося с боковой поверхностью, кПа.

f= 27кПа, f= 29,4кПа, f= 31,3кПа, f= 32,1кПа, f= 33,05кПа, f= 34,28 кПа

h- толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м

h= 3,9 м, h= 5,2 м, h= 6,3 м, h= 7,1 м, h= 8,1 м, h= 10,35 м

            Подставляем полученные значения в формулу и определяем несущую способность сваи С10-30 по грунту.

Fd = 1·(1·1590·0,09+1,2·(27·3,9+29,4·5,2+31,3·6,3+32,1·7,1+33,05·8,1+34,28·10,35))

Fd = 1710,0396 кПа

2.4.5

            Расчетную глубину промерзания грунта определяется по формуле:

df = Kn · dfn и зависит  от теплового режима здания, от наличия подвала, конструкции пола .

dfn -  нормативная глубина промерзания грунта, dfn = 2,2 м,

Kn - коэффициент, учитывающий влияние теплового режима здания, принимаемый равным 0,6.

тогда df = 2,2 · 0,6 = 1,32 м

            Количество свай С10-30 под стену здания можно определить по формуле:

       Fi · gK      1,4 · 1672,6

n = ¾¾¾ = ¾¾¾¾¾¾ = 1,4 св., принимаем 2 сваи.

         Fd           1710,0396

            Расстояние между сваями (шаг свай) вычисляется по формуле:

        mp · Fd     2 · 1710,039

a = ¾¾¾¾ = ¾¾¾¾¾¾ = 1,34 м

          Fd           1,4 · 1672,6

mp - число рядов свай

            Расстояние между рядами свай равно 1,1 м.

            Ширина ростверка в этом случае будет равна 1,5 м.

            Собственный вес одного погонного метра ростверка определяется по формуле: GIP = b · hp · gb · gf, где

b, hp - соответственно ширина и толщина ростверка, м

gb - удельный вес железобетона, принимаемый gb = 24 кН/м3

gf - коэффициент надежности по нагрузке, принимаемый  gf = 1,1

            Подставим в формулу соответствующие значения и величины:

GIP = 1,5 · 0,6 · 1,1 · 24 = 23,76 кН/м

            Собственный вес группы на уступах ростверка может быть определена по формуле: GIГР = (b - bc) · h · gI‘ · gf, где:

bc - ширина цокольной части

h - средняя высота грунта на уступах ростверка, h = 1,25 м

gI‘ - удельный вес грунта обратной засыпки, принимаемый равным gI‘= 17 кН/м3

gf - коэффициент надежности по нагрузке для насыпных грунтов gf = 1,15

GIГР = (1,5 - 0,73) · 1,25 · 17 · 1,15 = 18,81 кН/м

             Расчетная нагрузка в плоскости подошвы ростверка:

å FI = FI’ + GIР +GIГР = 1672,6 + 23,76 + 18,81 = 1715,17 кН/м

            Фактическую нагрузку, передаваемую на каждую сваю ленточного фундамента, определяем по формуле:

       a · å FI         1,4 · 1715,17

N = ¾¾¾¾ = ¾¾¾¾¾¾ = 1200,619 кН

            mP                   2

            Проверим выполнение условия несущей способности грунта в основании сваи:

       Fd                             1710,0396

N £ ¾            1200,69 £ ¾¾¾¾¾ = 1221,46

       gK                                    1,4

2.4.6

            Осадка ленточных фундаментов с двухрядным расположением свай и расстоянием между сваями (3 - 4 d) определяется по формуле:

        n · (1- n2)

S = ¾¾¾¾¾ · d0, где:

          p · E

n - полная нагрузка на ленточный свайный фундамент (кН/м) с учетом веса условного фундамента в виде массива грунта со сваями, ограниченного: сверху- поверхностью планировки, с боков - вертикальными плоскостями, проходящими по наружным граням крайних рядов свай, снизу - плоскостью, проходящей через нижние концы свай.

E, n - модуль деформации (кПа) и коэффициент Пуассона грунта в пределах снимаемой толщи.

d0 - коэффициент, определяемый по номограмме СНиП 2.02.03 - 85.

            Полная нагрузка n складывается из расчетной нагрузки, действующей в уровне планировочной отметки, и собственного веса условного ленточного фундамента.

 FII’ = 535,23 - 0,73 · 1,1 · 2,4 = 533,3 кН/м,      тогда полная нагрузка n равна:

n = FII’ + b · d · g, где:

b - ширина фундамента, равна 1,4 м

d - глубина заложения фундамента от уровня планировочной отметки, равна 13м

g - среднее значение удельного веса свайного массива, g = 20кН/м3

n = 533,3 + 1,4 · 13 · 20 = 897,3 кН/м

            Для определения коэффициента d0 необходимо знать глубину снимаемой толщи HC, которая в свою очередь, зависит от значения дополнительных напряжений, развивающихся в массиве грунта под фундаментом.

            Дополнительные напряжения определяются по формуле:

             n

s = ¾¾¾ · an, где:

          p · h

n - полная нагрузка на ленточный свайный фундамент, кН/м

h - глубина погружения свай, м

an - безразмерный коэффициент, зависит от приведенной ширины b = b/h и приведенной глубины рассматриваемой точки z/h, где z - фактическая глубина рассматриваемого слоя грунта от уровня планировки

 b = 1,4/10 = 0,14

            Вычисленные значения дополнительных напряжений сведем в табл. № 1

            Природные напряжения от действия собственного веса грунта определяются по формуле:

          n

szg = å  giII · hi, где:

          i=1

giII - удельный вес i - го слоя,

hi - толщина i - го слоя.

            Природные напряжения в уровне подошвы условного фундамента будут равны:

szdyg = 10,03 · 1,7 + 10,74 · 0,8 + 10,24 · 3,4 + 10,66 · 0,8 + 9,95 · 6,3 = 131,672

            Для дальнейшего расчета осадки необходимо знать удельный вес грунта твердых частиц

gS = grS, где

g - ускорение свободного падения, g = 9,8 м/с2

rS - плотность грунта твердых частиц.

gS1 = 26,36  gS2 = 26,55  gS3 = 26,068  gS4 = 26,85  gS5 = 26,26


          gS · gw

gSB = ¾¾¾¾ , где

            1+e

gS - удельный вес твердых частиц

gw - удельный вес воды

e - коэффициент пористости

gSb1 = 10,03  gSb2 = 10,74  gSb3 = 10,26  gSb4 = 10,66  gSb5 = 9,95

             n

szg = å  giII · hi  sgz1

          i=1

sgz1 = szdyg + g1 · h1 = 131,672 + 10 · 0,31 = 134,1245 кПа

szg2 = szg1 + g2 · h2 = 134,1245 + 10 · 0,38 = 137,9055 кПа

szg3 = szg1 + g3 · h3 = 137,9055 + 10 · 0,766= 145,567 кПа и так далее...

            Аналогично рассчитываются другие значения и сводятся в табл. 1. Ориентировочно, глубину снимаемой толщи HC можно определить из условия:

szp £ 0,2 · szg.

            Анализ табл. 1 показывает, что это условие выполняется примерно на относительной глубине z/h = 1,9. Тогда HC= 1,9 · 9,7 = 18,43 м

Z- глубина  от подошвы фундамента, м

            Коэффициент Пуассона для песка, n = 0,3. Пользуясь номограммой при HC/h = 1,9 м и b = 0,14 находим d0 = 2,15. Осадка фундамента будет равна:

        n · (1- n2)            897,3 · (1 - 0,32)

S = ¾¾¾¾¾ · d0 = ¾¾¾¾¾¾¾ · 2,15 = 0,025 м = 2,5 см.

          p · E                    3,14 · 21700

            Средняя осадка для многоэтажных бескаркасных зданий с несущими кирпичными стенами не должна превышать 10 см. Следовательно, условия

 S £ SU выполняется S = 2,5 см £ SU = 10 см.

Таблица 1

Z/h

an

szp [кПа]

Z [м]

szq [кПа]

0,2 · szq[кПа]

1,01

8,3858

246,87

0,08

131,672

26,208

1,05

6,5894

193,84

0,39

134,1245

26,824

1,1

5,02116

147,8

0,77

137,9055

27,581

1,2

3,4265

100,94

1,54

145,567

29,1137

1,3

2,67217

78,65

2,31

153,2285

30,6457

1,4

2,23026

65,7

3,08

160,89

32,178

1,5

1,9357

57,02

3,85

168,5515

33,71

1,6

1,72092

50,69

4,62

176,213

35,2426

1,7

1,5566

45,85

5,39

183,874

36,7749

1,8

1,42544

41,99

6,16

191,536

38,3072

1,9

1,31756

38,81

6,93

199,1975

39,839

2,0

1,22684

36,11

7,7

206,859

41,3718

2,1

1,14922

33,84

8,47

214,5205

42,904

2,2

1,0818

31,86

9,24

222,182

44,436

2,3

1,0225

30,12

10,01

229,8435

45,96

2,4

0,9699

28,57

10,78

237,505

47,5

2,5

0,9229

27,189

11,55

245,1665

49,03

2.4.7

            От правильности выбора дизель - молота зависит успешное погружение свай в проектное положение. В первом приближении дизель - молот можно подобрать по отношению веса его ударной части к весу сваи, которое должно быть для штанговых дизель - молотов 1,25 при грунтах средней плотности.

            Минимальная энергия удара, необходимая для погружения свай определяется по формуле:

E = 1,75 · a · FV, где:

а - коэффициент, равный 25 Дж/кН,

FV - расчетная нагрузка, допускаемая на сваю, кН.

E = 1,75 · 25 · 535,23 = 23416,31 Дж

            Пользуясь техническими характеристиками дизель - молотов подбирают такой молот, энергия удара которого соответствует минимальной. Возьмем трубчатый дизель - молот Ф - 859 с энергией удара 27 кДж. Полный вес молота Gh = 36500 Н, вес ударной части Gb = 18000 Н, вес сваи С10 - 30 равен 22800 Н. Вес наголовника принимаем равным 2000 Н. расчетная энергия удара дизель - молота Ф - 859:

ЕР = 0,4 · Gh’ · hm, где:

Gh’ - вес ударной части молота

hm - высота падения ударной части молота, hm = 2 м.

ЕР = 0,4 · 2 · 18000 = 14400 Дж.

            Проверим пригодность принятого молота по условию:

Gh + Gb

¾¾¾¾  £ KM, где:

     EP

Gh - полный вес молота

Gb - вес сваи и наголовника

KM - коэффициент, принимаемый при использовании ж/б свай равным 6.

         (36500 + 22600 + 2000)

ЕР = ¾¾¾¾¾¾¾¾¾¾¾ = 4,24 < G

                     14400

            Условие соблюдаются, значит принятый трубчатый дизель - молот Ф - 859 обеспечивает погружение сваи С10 - 30.

2.4.8

            Проектный отказ необходим для контроля несущей способности свай в процессе производства работ. Если фактический отказ при испытании свай динамической нагрузкой окажется больше проектного, то несущая способность сваи может оказаться необеспеченной. Формула для определения проектного отказа имеет вид:

                      h · A · EP                           m1 + Î2 · (m2 + m3)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾  ·  ¾¾¾¾¾¾¾¾¾ , где:

         gK · FI / m · (gK · FI / m + h · A)           m1 + m2 + m3

h - коэффициент, применяемый для железобетонных свай h = 1500 кН/м2

A - площадь поперечного сечения ствола сваи, м

m - коэффициент, равный 1

gK - коэффициент надежности, принимаемый при определении несущей способности сваи по расчету gK = 1,4

EP - расчетная энергия удара [кДж]

FI - расчетная нагрузка, допускаемая на сваю, [кН]

m1 - масса молота, [т]

m2 - масса сваи и наголовника, [т]

m3 - масса подбабка, [т]

Î - коэффициент восстановления удара, принимаемый при забивке железобетонных свай Î2 = 0.2

                           1500·0,09·14,4                           3,65+0,2·(18+0)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾  ·  ¾¾¾¾¾¾¾ = 0,0021м = 2,1мм

        (1,4·535,23)/1·(1,4·535,23/1+1500·0,09)         3,65+18+0

2.5

            Для дальнейшего расчета фундамента необходимо определить нагрузки.

2.5.1

            Грузовая площадь - (3,15 + 3,1) · 1 = 6,3 м2 по длине здания - 1м, по ширине - половина расстояния чистоте между стенами в двух пролетах. Нагрузки на фундамент на уровне спланированной земли [кН/м2]:

2.5.2

Покрытия

Чердачные перекрытия с утеплителем

Межэтажные перекрытия

Перегородки

Кирпичная кладка

2,54 кН/м2

3,80 кН/м2

3,60 кН/м2

1,00 кН/м2

18,00 кН/м2

2.5.3

Кровли от снега

Чердачные перекрытия

Межэтажные перекрытия

1,50 кН/м2

0,75 кН/м2

1,50 кН/м2


2.5.4

Покрытия

2,54 · 6,3

16,002кН

Чердачного перекрытия

3,8 · 6,3

23,94 кН

9-ти межэтажных перекрытий

9 · 3,6 · 6,3

204,12 кН

Перегородок на 9-ти этажах

9 · 1 · 6,3

56,7 кН

Стены с 1-го этажа (объем дверных проемов примем 7,5% объема всей кладки)

0,51 · 18 · 1 · 0,925 · 29,80

253,046 кН

Итого

553,808кН

2.5.5

На кровлю от снега

1,5 · 6,3

9,45 кН

Чердачные перекрытия

0,75 · 6,3

4,725 кН

 На 9-ти межэтажных перекрытиях с коэффициентом  jn1 = 0,4897

6,3 · 9 · 0,4897 · 1,5

41,6489 кН

Итого

55,8239


            Условия несущей способности грунтов основания единичной сваи или в составе свайного фундамента имеет вид:

           Fd

N   £   ¾  ,  где:

           ¡K 

            Определим несущую способность сваи по грунту Fd:

Fd = ¡C · (¡CR·R·A+U·å ¡CF · fi · hi)

Fd = 1·(1·1590·0,09+1,2·(27·3,9+29,4·5,2+31,3·6,3+32,1·7,1+33,05·8,1+33,67·9,35))

Fd = 1645,014 кН

            Несущая способность сваи по грунту достаточно высокая. Необходимо проверить, выдержит ли такую нагрузку свая по материалу. Расчет по прочности материала железобетонных свай должен производиться в соответствии с требованиями СНиП 2.03.01-84. При этом свая рассматривается как железобетонный стержень, жестко закрепленный в грунте. Несущая способность сваи может быть определена без учета продольного изгиба.

F = ¡ · (¡В · RВ · AВ + RS · AS), где

¡  - коэффициент условия работы, равен 1.

¡В - коэффициент условия работы бетона сваи, принимаемый для сваи сечением 30 х 30 см ¡В = 0,85.

AВ, AS - площади поперечного сечения соответственно бетона и продольной арматуры, м2

RВ, RS - расчетное сопротивление осевому сжатию соответственно бетона и продольной арматуры, кПа.

            Свая С7-30 согласно ГОСТ 19804.1 - 79 изготавливается из бетона класса В15 с RВ = 8500кПа и армируется в продольном направлении четырьмя стержнями Æ12мм A - II с RS = 280000 кПа.

            Несущая способность сваи С7-30 по материалу будет равна:

F = 1 · (0,85 · 8500 · 0,08954 + 0,00045 · 280000) = 773,54 кН

            Как видно из сравнения, несущая способность сваи по материалу меньше, чем по грунту. Следовательно, в дальнейших расчетах свайного фундамента в данных грунтовых условиях за несущую способность сваи следует принимать значение по прочности материала, как наименьшее.

2.5.6

            В данных инженерно - геологических условиях при расположении уровня подземных вод на глубине 5,4 м, глубина заложения подошвы ростверка зависит от расчетной глубины промерзания грунта. Нормативная глубина промерзания грунта для г. Северска может быть принята dfn = 2,2 м. Расчетная глубина промерзания зависит от теплового режима здания, от наличия подвала, конструкции пола  и определяется по формуле:

df = Kn · dfn, где:

dfn -  нормативная глубина промерзания грунта, dfn = 2,2 м,

Kn - коэффициент, учитывающий влияние теплового режима здания, принимаемый равным 0,5.

тогда df = 2,2 · 0,6 = 1,1 м. Глубина заложения ростверка - 3,3 м, что больше расчетной глубины промерзания грунта.

            Определим количество свай С7-30 под стену здания.

       Fi · gK     1,4 · 609,6319

n = ¾¾¾ = ¾¾¾¾¾¾¾ = 1,1 св. Принимаем n = 2 сваи.

         Fd             773,54

            Расстояние между сваями (шаг свай) вычисляется по формуле:

        mp · Fd         2 · 773,54

a = ¾¾¾¾ = ¾¾¾¾¾¾¾ = 1,3 м

          Fd            1,4 · 609,6319

mp - число рядов свай

            Ширина ростверка в этом случае будет равна 1,5 м.

            Собственный вес одного погонного метра ростверка определяется по формуле: GIP = b · hp · gb · gf, где

b, hp - соответственно ширина и толщина ростверка, м

gb - удельный вес железобетона, принимаемый gb = 24 кН/м3

gf - коэффициент надежности по нагрузке, принимаемый  gf = 1,1

            Подставим в формулу соответствующие значения и величины:

GIP = 1,5 · 0,6 · 1,1 · 24 = 23,76 кН/м

            Собственный вес группы на уступах ростверка может быть определена по формуле: GIГР = (b - bc) · h · gI‘ · gf, где:

bc - ширина цокольной части

h - средняя высота грунта на уступах ростверка, h = 1,25 м

gI‘ - удельный вес грунта обратной засыпки, принимаемый равным gI‘= 17 кН/м3

gf - коэффициент надежности по нагрузке для насыпных грунтов gf = 1,15

GIГР = (1,5 - 0,73) · 1,25 · 17 · 1,15 = 18,81 кН/м

             Расчетная нагрузка в плоскости подошвы ростверка:

å FI = FI’ + GIР +GIГР = 609,6319 + 23,76 + 18,81 = 672,2019 кН/м

            Фактическую нагрузку, передаваемую на каждую сваю ленточного фундамента, определяем по формуле:

       a · å FI          1,3 · 552,2019

N = ¾¾¾¾ = ¾¾¾¾¾¾¾ = 423,93 кН

            mP                   2

            Проверим выполнение условия несущей способности грунта в основании сваи:

       Fd

N £ ¾

       gK

                      773,54

423,93 кН £ ¾¾¾¾ = 552,52

                         1,4

2.5.7

            Осадку ленточных с двухрядным расположением свай и расстоянием между сваями (3 - 4 d) определяется по формуле:

        n · (1- n2)

S = ¾¾¾¾¾ · d0, где:

          p · E

n - полная нагрузка на ленточный свайный фундамент (кН/м) с учетом веса условного фундамента в виде массива грунта со сваями, ограниченного: сверху- поверхностью планировки, с боков - вертикальными плоскостями, проходящими по наружным граням крайних рядов свай, снизу - плоскостью, проходящей через нижние концы свай.

E, n - модуль деформации (кПа) и коэффициент Пуассона грунта в пределах снимаемой толщи.

d0 - коэффициент, определяемый по номограмме СНиП 2.02.03 - 85.

            Полная нагрузка n складывается из расчетной нагрузки, действующей в уровне планировочной отметки, и собственного веса условного ленточного фундамента.

 FII’ = 609,6319 - 0,73 · 1,1 · 2,4 = 607,704 кН/м,        тогда полная нагрузка n равна:

n = FII’ + b · d · g, где:

b - ширина фундамента, равна 1,4 м

d - глубина заложения фундамента от уровня планировочной отметки, равна 10м

g - среднее значение удельного веса свайного массива, g = 20кН/м3

n = 607,704 + 1,4 · 10 · 20 = 887,704 кН/м

            Для определения коэффициента d0 (определяется по номограмме) необходимо знать глубину снимаемой толщи HC, которая в свою очередь, зависит от значения дополнительных напряжений, развивающихся в массиве грунта под фундаментом.

            Дополнительные напряжения определяются по формуле:

             n

s = ¾¾¾ · an, где:

          p · h

n - полная нагрузка на ленточный свайный фундамент, кН/м

h - глубина погружения свай, м

an - безразмерный коэффициент, зависит от приведенной ширины b’ = b/h, b = 1,4 h = 6,7; b’ = 0,208 » 0,21.

            Природные напряжения в уровне подошвы условного фундамента будет равно:

szdyg = 10,26 · 2,6 + 10,66 · 0,8 + 10 · 3,3 + 8,63 · 3,3 = 102,5

            Для дальнейшего расчета осадки необходимо знать удельный вес грунта твердых частиц

gS = grS, где

g - ускорение свободного падения, g = 9,8 м/с2

rS - плотность грунта твердых частиц.

gS1 = 26,36  gS2 = 26,55  gS3 = 26,068  gS4 = 26,85  gS5 = 26,26

          gS · gw

gSB = ¾¾¾¾ , где

            1+e

gS - удельный вес твердых частиц

gw - удельный вес воды

e - коэффициент пористости

gSb1 = 10,03  gSb2 = 10,74  gSb3 = 10,26  gSb4 = 10,66  gSb5 = 9,95

             n

szg = å  giII · hi  sgz1

          i=1

sgz1 = szdyg + g1 · h1 = 102,51 + 10 · 0,31 = 105,6 кПа

szg2 = szg1 + g2 · h2 = 105,6 + 10 · 0,38 = 109,4 кПа

szg3 = szg1 + g3 · h3 = 109,4 + 10 · 0,766= 117,1 кПа и так далее...

            Аналогично рассчитываются другие значения и сводятся в табл. 2.


Таблица 2

Z/h

an

szp [кПа]

Z [м]

szq [кПа]

0,2 · szq[кПа]

1,01

6,5842

277,82

0,08

102,51

20,60

1,05

5,566

234,8588

0,39

105,6

21,12

1,1

4,684

197,6423

0,77

109,4

21,88

1,2

3,4208

144,3413

1,54

117,1

23,42

1,3

2,6889

113,4586

2,31

124,8

24,96

1,4

2,2693

95,7535

3,08

132,5

26,50

1,5

1,9742

83,3017

3,85

140,2

28,04

1,6

1,73838

73,3479

4,62

147,9

29,58

1,7

1,5861

66,9259

5,39

155,6

31,12

1,8

1,45049

61,2037

6,16

163,3

32,66

1,9

1,3388

56,4909

6,93

171,0

34,20

2,0

1,2452

52,5414

7,7

178,7

35,74

2,1

1,165

49,157

8,47

186,4

37,28

2,2

1,0956

46,229

9,24

194,1

38,82

2,3

1,027

43,3344

10,01

201,8

40,36

2,4

0,9807

41,38

10,78

209,5

41,90

2,5

0,9325

39,347

11,55

217,2

43,44

            Ориентировочно, глубину снимаемой толщи HC можно определить из условия:

szp £ 0,2 · szg.

            Анализ табл. 2 показывает, что это условие выполняется примерно на относительной глубине z/h = 2,5. Тогда HC= 2,5 · 6,7 = 16,75 м

Z- глубина  от подошвы фундамента, м

            Коэффициент Пуассона для песка, n = 0,3. Пользуясь номограммой при HC/h = 2,5 м и b = 0,21 находим d0 = 2,55. Осадка фундамента будет равна:

        n · (1- n2)            887,7 · (1 - 0,32)

S = ¾¾¾¾¾ · d0 = ¾¾¾¾¾¾¾ · 2,55 = 0,03 м = 3,0 см.

          p · E                    3,14 · 21700

            Средняя осадка для многоэтажных бескаркасных зданий с несущими кирпичными стенами не должна превышать 10 см. Следовательно, условия

 S £ SU выполняется S = 3,0 см £ SU = 10 см.

2.5.8

            От правильности выбора дизель - молота зависит успешное погружение свай в проектное положение. В первом приближении дизель - молот можно подобрать по отношению веса его ударной части к весу сваи, которое должно быть для штанговых дизель - молотов 1,25 при грунтах средней плотности.

            Минимальная энергия удара, необходимая для погружения свай определяется по формуле:

E = 1,75 · a · FV, где:

а - коэффициент, равный 25 Дж/кН,

FV - расчетная нагрузка, допускаемая на сваю, кН.

E = 1,75 · 25 · 609,6319 = 26671,3956 Дж

            Пользуясь техническими характеристиками дизель - молотов подбирают такой молот, энергия удара которого соответствует минимальной. Возьмем трубчатый дизель - молот Ф - 859 с энергией удара 27 кДж. Полный вес молота Gh = 36500 Н, вес ударной части Gb = 18000 Н, вес сваи С7 - 30 равен 16000 Н. Вес наголовника принимаем равным 2000 Н. расчетная энергия удара дизель - молота Ф - 859:

ЕР = 0,4 · Gh’ · hm, где:

Gh’ - вес ударной части молота

hm - высота падения ударной части молота, hm = 2 м.

ЕР = 0,4 · 2 · 18000 = 14400 Дж.

            Проверим пригодность принятого молота по условию:

Gh + Gb

¾¾¾¾  £ KM, где:

     EP

Gh - полный вес молота

Gb - вес сваи и наголовника

KM - коэффициент, принимаемый при использовании ж/б свай равным 6.

         (36500 + 16000 + 2000)

ЕР = ¾¾¾¾¾¾¾¾¾¾¾ = 3,78 < G

                     14400

            Условие соблюдаются, значит принятый трубчатый дизель - молот С - 859 обеспечивает погружение сваи С7 -30.

2.5.9

            Проектный отказ необходим для контроля несущей способности свай в процессе производства работ. Если фактический отказ при испытании свай динамической нагрузкой окажется больше проектного, то несущая способность сваи может оказаться необеспеченной. Формула для определения проектного отказа имеет вид:

                      h · A · EP                           m1 + Î2 · (m2 + m3)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾  ·  ¾¾¾¾¾¾¾¾¾ , где:

         gK · FI / m · (gK · FI / m + h · A)           m1 + m2 + m3

h - коэффициент, применяемый для железобетонных свай h = 1500 кН/м2

A - площадь поперечного сечения ствола сваи, м

m - коэффициент, равный 1

gK - коэффициент надежности, принимаемый при определении несущей способности сваи по расчету gK = 1,4

EP - расчетная энергия удара [кДж]

FV - расчетная нагрузка, допускаемая на сваю, [кН]

m1 - масса молота, [т]

m2 - масса сваи и наголовника, [т]

m3 - масса подбабка, [т]

Î - коэффициент восстановления удара, принимаемый при забивке железобетонных свай Î2 = 0.2

                           1500·0,09·14,4                          3,65+0,2·(1,8+0)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾  ·  ¾¾¾¾¾¾¾ = 0,0016м = 1,6мм

        (1,4·609,63)/1·(1,4·609,63/1+1500·0,09)        3,65+1,8+0


2.6

1)    Берлинов МВ

2) 

3)          под ред. Трофименкова

4)      Веселов ВА

5) 

6) 

7) 

8) 


3.

3.1

            Земляные работы выполняются при постройке любого здания или сооружения и составляют значительную часть их стоимости и трудоемкости. Земляные сооружения создаются путем образования выемок в грунте или возведения из него насыпей. Выемки, разрабатываемые только для добычи грунта называются разрезом, а насыпи, образованные при отсыпке излишнего грунта - отвалом.

            В гражданском и промышленном строительстве земляные работы выполняются при устройстве траншей и котлованов. Выполнение таких объемов работ возможно лишь с применением высокопроизводительных машин.

            В современном строительстве широко применяются монолитные бетонные конструкции. Бетонные работы всё еще содержат ряд тяжелых и трудоемких процессов. В последнее время появились технические решения, направленные на снижение трудоемкости работ, повышение качества конструкции из монолитного бетона. Монолитные жилые и общественные здания придают большую выразительность районам, позволяют снизить стоимость строительства на 10 - 15%.

3.2

            Жилое здание выполняется из кирпича. Фундаменты свайные трех типов:

1)  10 м с сечением 30 х 30 см

2)  7 м с сечением 30 х 30, принимается под среднюю стену

3) 


п/п

Длина сваи, м

Сечение,

 см

1

С-10

30х30

2

С-7

30х30

3

С-5

30х30

            В плане здание имеет сложное строение, поэтому расчет будет производиться для намеченных блок секций.

3.3

            При возведении фундаментов под многоэтажные здания разрабатываются котлованы

НК = Нр + Нпод

Нр = 0,6 м

Нпод = 2 м

НК = 2,72 + 0,6 - 0,9

НК  = 2,4 м

            Принимаем y = 0,8

a = L1 + L2 + L3 + 0,83 + 0,83 + 0,8 + 0,8 = 6,9 + 5,1 + 6,3 + 0,83 + 0,83 + 0,8 + 0,8

a = 21,5

a1 = a + 2 · c, где

а - ширина низа котлована

а1 - ширина верха котлована

с - заложение откоса

НК - высота котлована

m - коэффициент откоса, равный 0,72

с = 2,4 · 0,72 = 1,75 м

а1 = 21,5 + 1,75 · 2 = 25 м

VK - объём котлована

VK = (h / 6) · [a·b + c·d + (a + c) · (b + d)], м3, где:

a и b - ширина и длина подошвы котлована

c и d - ширина и длина по верху котлована

h - глубина котлована

VK = (2,4 / 6) · [21,5 · 505 + 25 · 508,5 + (21,5 + 25) · (505 + 508,5)]

            На выбор типа экскаватора влияют:

1) 

2) 

            Выбираем комплект машин для разработки котлованов. Выбор производится в два этапа:

I.   

II.  

            Оптимальная глубина разработки экскаватора Нопт = 0,65 - 0,75 от максимальной глубины разработки Нмах.

Нмах = 5,8 м, тогда Нопт = 0,7 · 5,8 = 4,06 м

            Выбираем экскаватор ЭО4121А “обратная лопата” с характеристиками:

¨    0,65 м3

¨    5,8 м

¨    мах = 9 м

¨    5 м

¨   

            Выбор оптимального типа и количества автосамосвалов для отвоза грунта в отвал при разработке экскаватором “обратная лопата”. Принимаем два автосамосвала марки КРАЗ - 222, грузоподъемностью 10т и емкостью кузова 8м3.

3.3.1

            Для разработки недобора применяются бульдозеры с подчистным устройством. Допустимая величина недобора - 15 м3. Проектирование схем разработки грунта в котловане - одноковшовым экскаватором “ОЛ”. Разработка грунта осуществляется лобовыми и боковыми проходками.

Нзабоя = нк - НЕДОБОР = 2,4 - 0,15 = 2,25 м

Экскаватор “ОЛ” - ЭО 4121А с VКОВША = 0,65 м3

amax = 9 м

R0 - оптимальный радиус резанья, R0 = 0,8 · Rmax = 0,8 · 9 = 7,2 м

B = (1,5 - 1,7) · Rmax = 1,6 · 9 = 14,4 м

3.3.2

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час на 100м3

Затраты труда на весь V чел.час на 100м3

Расценка за 1 изм. р-к на 100м3

Зарплата на весь V работ р-к на 100м3

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е2-I-II 4-6 табл.2

Разработка грунта экскаватором “ОЛ” ЭО4121А

100м3

315,229

2,3

725,027

2-44

769-158

машинист 6р-1

Е2-I-22 табл.2 стр.86

Разработка недобора бульдозером

100м3

16,2863

0,55

8,9574

0-58,3

9-49

машинист 6р-1

Е2-I-34

Обратная засыпка

100м3

73,03

0,31

22,63

0-32,9

24-02

машинист 6р-1

Е2-I-34

срезка растительного слоя бульдозером

1000м2

12,713

0,69

8,77

0-73,1

9-29

машинист 6р-1

            Для разработки недобора принимаем бульдозер Д3 -19 на базе трактора Т - 100.

3.4

            Сваи предназначаются для передачи нагрузки от здания или сооружения на грунты. По характеру работы в грунта сваи подразделяются на сваи - стойки и висячие сваи. Висячими называют сваи, передающие нагрузку от здания за счет трения в грунте.

            Расположение свай в плане зависит от вида расположение свай на плане зависит от вида сооружения, от веса и места приложения нагрузки. Погружение в грунт заранее изготовленных свай осуществляется при помощи молотов разной конструкции, представляющих собой тяжелые металлические оголовки, подвешенные на тросах копров, которые поднимаются на необходимую высоту при помощи лебедок этих механизмов и свободно падают на голову свае.


Марка сваи

Масса, т

Кол-во

Суммарная

1-го элемента

общая

длина, м

1

С10 - 30

2,28

10351,3

4540

45400

2

С7 - 30

1,60

1536

960

6720

3

С5 - 30

1,15

404,8

352

1760

Итого:

12292

5852

53880

3.4.1

            Технологическая карта разработана на погружение забивных свай длиной до 16м при многорядном расположении свай. Номенклатура забивных железобетонных свай принята в соответствии со следующими государственными стандартами:

·      * “Сваи забивные железобетонные цельные сплошного квадратного сечения с ненапрягаемой арматурой”;

·      * “Сваи забивные железобетонные цельные сплошного квадратного сечения с поперечным армированием ствола и напрягаемой арматурой”; ГОСТ 19804.0 - 79* “Сваи забивные железобетонные. Общие технические условия”;

·      * “Сваи. Методы полевых испытаний”.

            При устройстве свайных фундаментов кроме технологической карты следует руководствоваться следующими нормативными документами:

¨   

¨   

¨   

¨   

            Область применения свай указана в обязательном приложении к ГОСТ 19804.0 - 78*. Технологическая карта разработана для I и II групп.

            Устройство свайных фундаментов предусматривается комплексно - механизированным способом с применением серийно выпускаемого оборудования и средств механизации. Калькуляция трудовых затрат, график выполнения работ, схемы погружения свай, материально - технические ресурсы и технико - экономические показатели выполнены для забивных свай длиной 10 и 7 м сечением 30 х 30 см.

            В состав работ, рассматриваемых картой входят:

·     

·     

·     

·     

·     

·     

·     

3.4.2

            До начала погружения свай должны быть выполнены следующие работы:

·     

·     

·     

·     

·     

·     

            Монтаж копрового оборудования производится на площадке размером не менее 35 х 15м. После окончания подготовительных работ составляют двухсторонний акт о готовности и приемке строительной площадки, котлована и других объектов, предусмотренных ППР.

            Подъем свай при разгрузке производят двухветевым стропом за монтажные петли, а при их отсутствии - петлей “удавкой”. Сваи на строительной площадке разгружают в штабели с рассортировкой по маркам. Высота штабеля не должна превышать 2,5м. Сваи укладывают на деревянные подкладки толщиной 12см с расположением остриями в одну сторону. Раскладку свай в рабочей зоне копра, на расстоянии не более 10м производят с помощью автокрана на подкладке в один ряд. На объекте должен быть запас свай не менее чем на 2 - 3 дня.

            До погружения каждую сваю с помощью стальной рулетки размечают на метры от острия к голове. Метровые отрезки и проектную глубину погружения маркируют яркими карандашными рисками, цифрами (указывающими метры) и буками “ПГ” (проектная глубина погружения). От риски “ПГ” в сторону острия с помощью шаблона наносят риски через 20мм (на отрезке 20 см) для удобства определения отказа (погружения сваи от одного удара молота). Риски на боковой поверхности свайного ряда позволяют видеть глубину забивки сваи в данный момент и определять число ударов молота на каждый метр погружения. С помощью шаблона на сваю наносят вертикальные риски, по которым визуально контролируют вертикальность погружения свай.

            Геодезическую разбивку свайного ряда производят по окончании разбивки основных и промежуточных осей здания. При разбивке центров свай по свайному ряду пользуются компарированной рулеткой. Разбивку выполняют в продольном и поперечном направлениях, руководствуясь рабочими чертежами свайных рядов. Места забивки свай фиксируют металлическими штырями длиной 20 -30 см. Вертикальные отметки головок свай привязывают к отметке репера.

            Погружение свай производят дизель - молотом Ф - 859 на базе экскаватора ЭО - 6113, оборудованным дизель молотом типа СП - 78. Для забивки свай рекомендуется применять Н - образные литые и сварные наголовники с верхней и нижней выемками. Свайные наголовники применяют с двумя деревянными прокладками из твердых пород (дуб, бук, граб, клен). погружение свай производится в следующей последовательности:

1) 

2) 

3) 

4) 

5) 

            Строповку сваи для подъема на копер производят универсальным стропом, охватывающим сваю петлей “удавкой” в местах расположения штыря. К копру сваи подтягивают рабочим канатом с помощью отводного блока по спланированной или по дну котлована по прямой линии.

            Молот поднимают на высоту, обеспечивающую установку сваи. Заводку сваи в наголовник производят путем ее подтягивания к мачте с последующей установкой в вертикальное положение. Поднятую на копер сваю наводят на точку забивки и разворачивают свайным ключом относительно вертикальной оси в проектное положение. Повторную выверку производят после погружения сваи на 1 м и корректируют с помощью механизмов наведения.

            Забивку первых 5 - 20 свай, расположенных в различных точках строительной площадки, производят залогами (число ударов в течении 2 минут) с подсчетом и регистрацией количества ударов на каждый метр погружения сваи. В конце забивки, когда отказ сваи по своей величине близок к расчетному, производят его измерение. Измерение отказов производят с точностью до 1мм и не менее, чем по трем последовательным залогам на последнем метре погружения сваи. За отказ, соответствующий расчетному, следует принимать минимальное значение средних величин отказов для трех последовательных залогов.

            Измерения отказов производят с помощью неподвижной реперной обноски. Сваю, не давшую расчетного отказа, подвергают контрольной добивке после ее “отдыха” в грунте в соответствии с ГОСТ 5686 - 78*. В случае, если отказ при контрольной добивке превышает расчетный, проектная организация устанавливает необходимость контрольных испытаний свай статической нагрузкой и корректировки проекта свайного фундамента. Исполнительными документами при выполнении свайных работ являются журнал забивки свай и сводная ведомость забитых свай.

            Срубку голов свай начинают после завершения работ по погружению свай на захвате. В местах срубки голов наносят риски. Срубку выполняют с помощью установки для скручивания голов СП - 61А, смонтированной на автомобильном кране. Работу по срубке голов свай выполняют в следующем порядке:

1) 

2) 

3) 

4) 

            Погружение свай производят при промерзании грунта не более 0,5 м. При большем промерзании грунта погружение свай производят в лидирующие скважины. Диаметр лидирующих скважин при погружении свай должен быть не более диагонали и не менее стороны поперечного сечения сваи, а глубина - 2/3 глубины промерзания. Проходку лидирующих скважин производят трубчатыми бурами, входящими в состав оборудования копра.

            Работу по погружению свай выполняют следующие монтажные звенья:

·     

·        1 чел.

·     

·     

            Все звенья, работающие на погружении свай включают в комплексную бригаду конечной продукции.

            В технологической карте предусматривается повышение производительности труда в среднем на 15% за счет максимального использования фронта работ , внедрения комплексной механизации и наиболее производительных машин, комплектной поставки, рациональных решений по организации и технологии производства работ.

            Работы по погружению свай должны выполняться в соответствии со СНиП Ш - 16 - 80, СНиП Ш - 4 - 80 и “Правилами устройства и безопасной эксплуатации грузоподъемных кранов”. Между машинистом копра и помощником должна быть установлена надежная сигнальная связь. Каждый сигнал должен иметь только одно значение и подаваться одним лицом. При погружении свай запрещается находиться в зоне работы копрового оборудования, радиус которой превышает высоту мачты на 5 м. Сваи рекомендуется подтягивать по прямой линии в пределах видимости машиниста копра только через отводной блок, закрепленный у основания копра. Зона работ по срубке голов свай должна быть временно ограждена. Газовую резку арматуры необходимо выполнять с соблюдением соответствующих требований СНиП Ш - 4 - 80.32


3.4.3

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час, маш.смена

Затраты труда на весь V, чел.день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е12 - 52 - 4

Разгрузка свай и укладка их в штабеля

100 свай

58,52

21,3

7,1

152

50,66

12-87

4-98

753-152

291-42

такелажники 3р-2

машинист 5р-1

Е12 - 52

Переворачивание свай для разметки рисок

100 свай

58,52

28,4

9,47

202,6

67,58

17-15

6-65

1003-61

389-158

такелажники 3р-2

машинист 5р-1

Е12 - 52 -3

Раскладка свай у мест погружения

100 свай

58,52

30,0

10,0

214,18

71,39

18-12

7-02

1060-38

410-81

такелажники 3р-2

машинист 5р-1

Е12 - 66

Разметка свай краской через 1 м

100 свай

53,88

1,2

78,84

0-66,6

358-84

кровельщики 3р-1

5р-1

Е12 -21

Погружение свай

1 свая

5852

3,45

1,15

2462,12

820,7

2-35

0-81

13752-20

4740-12

машинист 6р-1

Е12 -21

Срубка голов ж/б свай

1 свая

5852

0,351

0,117

250,49

83,498

0-21,2

0-08,2

1240-62

479-86

такелажники 3р-2

машинист 5р-1

Е12 -21

Срезка стержней арматуры

10 перерезов

23408

0,07

199,82

0-04,4

102-99

газорезчик 4р-1

Итого:

4741,99

1093,82

19198-75

6311-36


3.5    фундаментов

3.5.1

             Процесс возведения монолитных железобетонных фундаментов является комплексным процессом в который входят:

1) 

2) 

3) 

4) 

5) 

6) 

            Опалубка - временная вспомогательная конструкция, обеспечивающая заданные геометрические размеры и очертания бетонного элемента конструкции. Опалубка должна отвечать следующим требованиям:

1) 

2) 

3) 

4) 

            Принимаем металлическую инвентарную (унифицированную) опалубку, состоящую из инвентарных щитов (см. спецификацию элементов опалубки)



Марка

Кол-во

Масса, кг

Площадь, м

Размеры


щитов

1-го эл-та

общая

1-го эл-та

общая

опалубки

Щ-1

20

71

1420

0,9

18

0,6 х 1,5

Щ-2

48

57

2736

0,72

34,56

0,6 х 1,2

Щ-3

82

52,250

4284,5

0,66

54,12

0,6 х 1,1

Щ-4

40

85,5

3420

1,08

43,2

0,6 х 1,8

3.5.2

1) 

2) 

3) 

4) 


3.5.3

            Армируются фундаменты плоскими каркасами, которые доставляются на площадку из ЖБК и ДСК.

            На строительной площадке их сваривают в пространственные каркасы. Монтаж арматурных изделий состоит из следующих технологических операций:

1. 

2. 

3. 

3.6

            Способы транспортирования бетонной смеси в зависимости от применяемых средств могут быть порционными и непрерывными. Порционное транспортирование осуществляется с использованием автосамосвалов.

3.6.1

            Для интенсификации выгрузки бетонной смеси используем поворотную бадью. Загружаем ее при помощи самосвала. Затем, кран поднимает бадью в вертикальной плоскости и подает ее к месту выгрузки. Корпус бадьи снабжен полозьями, которые служат направляющими при подъеме бадьи в вертикальное положение. Для предотвращения зависания бетонной смеси на корпус бадьи устанавливают нависной вибратор.

            При подаче бетонной смеси краном, принимаются меры против самопроизвольного открывания затворов бадей. При выгрузке бетонной смеси из бадьи уровень низа бадьи должен находиться не выше 1м от бетонируемой поверхностию Запрещается стоять под бадьей во время ее установки и перемещения.


3.6.2

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час, маш.смена

Затраты труда на весь V, чел.день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е4-I-44

Установка арматурных сеток и плоских каркасов

1 каркас

1860

1,3

2418

0-88,1

1638,66

арматурщик 3р-1, 2р-1

Е4-I-37

Устновка металлической инвентарной опалубки

1 м2

4309,76

0,39

1680,8

0-29,1

1254,14

слесарь - строитель4р-1, 3р-1

Е4-I-37

Укладка бетонной смеси в фундамент

1 м3

2677,72

0,33

883,64

0-19,9

532,86

бетонщик 4р-1, 2р-1

Е4-24-13

Подача бетонной смеси стреловым краном в бадьях

1 т

6694,3

0,225

1506,21

0-149

997,45

машинист 6р-1

Е4-I-42

Приемка бетонной смеси из автосамосвала в поворотную бадью

1 м3

2677,72

0,085

227,66

0-042

112,46

бетонщик 4р-1, 2р-1

Е4-I-42

Частичная перекидка бетонной смеси в конструкцию вручную

1 м3

133,88

0,75

100,41

0-40

53,95

бетонщик 4р-1, 2р-1

Е4-I-54

Покрытие бетонной поверхности опилками слоем до 0,1 м

1 м3

446,94

0,27

120,67

0-17,3

77,32

бетонщик 2р-1

Е4-I-54

Поливка бетонной поверхности из брансбойта

100 м2

4469,4

0,14

6,256

0-09

4,02

бетонщик 2р-1

Е4-I-57

Распалубливание

1 м3

4309,76

0,21

905,04

0-14,1

607,67

слесарь - строитель2р-1, 3р-1

Итого:

7848,63

5278,53


3.6.3

            Технологический процесс бетонирования состоит из подготовительных, вспомогательных и основных операций.

            Подготовительные операции - перед приемом бетонной смеси подготавлиают территорию объекта, подъездные пути, места разгрузки, емкости для приема бетона.

            Вспомогательные операции - арматуру, закладные детали, анкерные болты очищают от грязи и от отслаивающейся ржавчины.

            Основные операции: укладывают смесь слоями в соответствии с указаниями проекта, т.е. толщиной ~ 0,3м, при этом толщина каждого слоя должна быть не более глубины проработки вибратора; укладку и уплотнение бетонной смеси необходимо осуществлять в непрерывной последовательности.

3.6.3.1

            Типовая технологическая карта принимается при проектировании организации бетонирования ленточных фундаментов. Подача бетонной смеси призводится стреловым краном (Q = 5 - 12 т) в бадьях, емкостью 1 -2 м3 в зависимости от грузоподъемности. Укладку 100 м3 бетона звено из 9 человек произведет за 2,12 смены, при работе со стреловым краном.

3.6.3.2

¨   

¨    1 м3 при грузоподъемности крана 5 т на рабочем вылете стрелы 3 м. Бадьи под загрузку устанавливаются на переносной настил для предотвращения потерь раствора.

¨   

¨   

¨   

3.6.3.3

            В процессе бетонирования мастер или прораб должны вести наблюдение за производством работ согласно СНиП III - ВI - 62 п.п. 5.11 ~ 5.12, а результаты наблюдения записывать в журнал бетонных работ ро установленой форме.

            При исправлении дефектов в раковинах больших размеров отбивается весь тыхлый бетон, а поверхность здорового бетона очищается проволочной щееткой и промывается водой. Затем раковины заделываются бетонной смесью с мелким щебнем или гравием.

3.6.3.4

            Уплотнение бетонной смеси при укладке ее в конструкции делается для получения плотного, прочного и долговечного бетона. Уплотнение бетонной смеси произаодится, как правило виброванием, для чего в свежеуплотненную бетонную смест погружается вибратор, который передает смеси свои колебания. Под действием колебаний бетонная смесь разрушается и начинает течь, хорошо заполняя опалубку; при этом вытесняется воздух  из смеси. В результате получается плотный бетон. Уплотнение бетонной смеси может производиться глубинными и поверхностными вибраторами. Для уплотнения бетонной смеси в ленточных фундаментах, как правило, применяется глубинный вибратор с гибким валом со встроенным электродвигателем.

            Глубинный вибратор выбирают  по диаметру вибронаконечника, в зависимости от густоты армирования. Шаг перестановки вибратора не должен превышать 1,5 радиуса его действия.

R - радиус действия вибратора.

            Выбираем глубинный вибратор ИВ - 47. Показатели:

·     76 мм

·     440 мм

·     30 см

·    

·    

·     3400 мм

·     39 кг

·    

3.6.3.5

            После определения ведущей машины комплекта кран - бадья и типа транспортных средств по сметной эксплуатационной производительности ведущей машины определяют количество транспортных средств, необходимых для бесперебойной доставки бетонной смеси на объект.

            Число автотранспортных единиц в смену определяется по формуле:

        КР · ПЭ       1,08 · 75

N = ¾¾¾¾ = ¾¾¾¾¾ = 6,67 » 7 машин.

           ПА                12,1

КР - коэффициент, учитывающий резерв производительности ведущей машины, КР = 1,08

ПЭ - сметная эксплуатационная производительность ведущих машин, ПЭ = 75 м3 в смену,

ПА - сметная эксплуатационная производительность автотранспортной единицы, м3 в смену, определяется по формуле:

         60 · V · tCM · KB       60 · 3 · 0,885 · 8,2

ПА = ¾¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾ = 12,1

                 tЦ                               108,35

V - объем бетонной смеси, загружаемую в транспортную единицу, м3,

tCM - продолжительность смены - 8,2 часа,

KB - коэффициент использования транспортной единицы во времени, KB =0,885

tЦ - продолжительность транспортного цикла для транспортного средства:

              2 · L · 60                   2 · 15 · 60

tЦ = tЗ + ¾¾¾¾¾ + tР = 6 + ¾¾¾¾¾ + 3,5 = 108,35 мин, [1 час 50 мин.]

                  VСР                        (15+20) / 2

tЗ - время загрузки транспортной единицы бетонной смесью на заводе, 6 мин.

L - расстояние перевозки от БСЦ, 15 км.

VСР - средняя скорость движения транспортной единицы в груженом (15 км/ч) и порожнем (20 км/ч) направлении.

V - объем смеси, перевозимой за одну поездку, м3

tР - разгрузка бетонной смеси из транспортной единицы в бадьи, 3,5 мин.

3.7

                             n

Ce = 1,08 · (E0I + åCM · tn) + 1,5 · (E0II + Зпл) + Эпл

                            i=1

E0I - стоимость единовременных затрат, 17,75

 n

åCM - суммарная стоимость

i=1

tn - число механизмов

E0II - заработная плата в составе единовременных работ

Зпл - чистая заработная плата

                          n

Te = Етр · å (М · tn + Ззатр.тр)

                i=1

Етр - трудозатраты единовременных работ

М - трудозатраты за 1 час работы механизма

Ззатр.тр - затраты труда из калькуляции

         P

T0 = ¾¾

         nэк

P - общий объем

nэк - количество тонн, смонтируемых за смену

         n

nэк = å ni · qi · t · Kв

        i=1

ni - циклы в час

qi - количество элементов в цикле

t - время в смену, 8,2 ч

Kв - коэффициент использования во времени

         60

nэк = ¾¾ · tс · Kв

          tц

                   S · 60     S · 60

tц = tс + tр + ¾¾¾ + ¾¾¾

                       V1           V2

tс - время строновки

tр - время расстроновки

S - расстояние от завода до объекта

V1 - скорость груженого транспорта

V2 - скорость порожнего транспорта.

                              n  Синв · Т0

Пэ = Се · V + Ен · å ¾¾¾¾

                             i=1     Tг

Се - себестоимость монтажа,

V - общий объем,

Ен - коэффициент эффективности капитальных вложений,

Tг - время работы по году.


3.8

1)    Балицкий ВС

2)    Евдокимов

3)    под ред. Вареника ЕИ

4)    Ждановский БВ

5)    Сташевский ВП

6)    Ламцов ВА

7)    Казанока НС

8)    Афанасьев АА

9) 

10)

11)

12)


4.

4.1                  фундаментов для наружных стен

            Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:

       q0 · L

P = ¾¾¾ , где:

           a

L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка,    [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:

                    ______

                 3   Ep · Ip

a = 3,14 · Ö  ¾¾¾  , где:

                     Ek · bk

Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.

      bр · h3р    1,5 · 0,63

Ip = ¾¾¾ = ¾¾¾¾  = 0,027 м4

          12             12

bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м

            Подставим значения в вышеприведённую формулу:

                    __________

                 3   2,7 · 0,027               3_______

a = 3,14 · Ö  ¾¾¾¾¾ = 3,14 · Ö 0,03698 = 3,14 · 0,33316 = 1,046 » 1,1 м

                     2,7 · 0,77

            тогда:

       q0 · L      1696,36 · 1,3

P = ¾¾¾ = ¾¾¾¾¾¾¾ = 2004,78

           a                1,1

            Наибольшую ординату эпюры сваи - р0 можно определить по формуле:

       q0 · Lp

р0 = ¾¾¾ , где:

           a

Lp - расчётный пролёт [м], равный 1,05 · Lсв, где L - расстояние между сваями в свету [м]

       1696,36 · 0,84

р0 = ¾¾¾¾¾¾¾ = 1295,4

                 1,1

            Расчётные изгибающие моменты Моп и Мпр определяются по формулам:

            q0 · L2p      1696,36 · 0,842

Моп = - ¾¾¾ = - ¾¾¾¾¾¾¾¾ = - 99,74 кНм2

              12                      12

         q0 · L2p     1696,36 · 0,842

Мпр = ¾¾¾ = ¾¾¾¾¾¾¾¾ = 49,87 кНм2

             24                    24

            Поперечную перерезывающую силу в ростверке на грани сваи можно определить по формуле:

       q0 · Lp      1696,36 · 084

Q = ¾¾¾  = ¾¾¾¾¾¾¾ = 712,47 кН , где:

           2                     2

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка

Lp - расчётный пролёт [м]

            Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

            Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01 - 84 п. 3.18.         Вычисляем коэффициент  am:

                M

am = ¾¾¾¾¾¾ , где:

          Rb · b · h20

М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.

                 49,87 · 106

am = ¾¾¾¾¾¾¾¾¾¾¾ = 0,01

          11,5 · 103 · 1,5 · 0,552

            При  am = 0,01 находим  h = 0,977, тогда требуемую площадь растянутой арматуры определим по формуле:

              M

As = ¾¾¾¾¾ , где:

         Rs · h · h0

М - момент в пролёте

Rs - рассчётное сопротивление арматуры

               49,87 · 106

As = ¾¾¾¾¾¾¾¾¾  = 254 мм2

         365 · 0,977 · 0,55

            Принимаем арматуру класса А -III 8Æ7 мм (As = 308 мм2). Так - как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру Æ12 мм, где As = 905 мм2.

            Сечение на опоре:

·     

·      0 = 600 - 50 = 550 мм

            Вычисляем коэффициент  am:

                М                      99,74 · 106

am = ¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾ = 0,019

          Rb · b · h20       11,5 · 103 · 1,5 · 0,55

            Находим  h = 0,99, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А - III, Rs = 360 МПа:

              M                99,74 · 106

As = ¾¾¾¾¾ = ¾¾¾¾¾¾¾¾ = 501,85 мм2

         Rs · h · h0     360 · 0,99 · 550

            Принимаем стержни из арматуры А - III, 8Æ10 мм (As = 628 мм2).

4.1.1

            Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А - I с шагом S = 310мм.

4.1.2

            Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F £ a · Rbt · Um · h0

F - продавливающая сила

a - коэффициент, принимаемый равным 1

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

            При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 · Fsw = 1696,36 + 0,8 · 6,615 =1701,65

Fd = F

            Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:

Fsw = å Rsw · Asw , где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А - I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 · Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2

Fsw = 3 · 175 · 103 · 0,0000126 = 6,615

F £ 1· 0,9 · 2 · 0,55 = 990 кН = Р

F = 1696,36 > Р = 990 кН, что удовлетворяет условию расчёта на продавливание.


4.2                  фундаментов для внутренних стен

            Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:

       q0 · L

P = ¾¾¾ , где:

           a

L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка,    [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:

                    ______

                 3   Ep · Ip

a = 3,14 · Ö  ¾¾¾  , где:

                     Ek · bk

Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.

      bр · h3р    1,5 · 0,63

Ip = ¾¾¾ = ¾¾¾¾  = 0,027 м4

          12             12

bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м

            Подставим значения в вышеприведённую формулу:

                    __________

                 3   2,7 · 0,027               3_____

a = 3,14 · Ö  ¾¾¾¾¾ = 3,14 · Ö 0,045 = 3,14 · 0,35569 » 1,1 м

                     2,7 · 0,60

            тогда:

       q0 · L      633,4 · 1,3

P = ¾¾¾ = ¾¾¾¾¾ = 748,56

           a               1,1

            Наибольшую ординату эпюры сваи - р0 можно определить по формуле:

       q0 · Lp

р0 = ¾¾¾ , где:

           a

Lp - расчётный пролёт [м], равный 1,05 · Lсв, где L - расстояние между сваями в свету [м]

       633,4 · 0,84

р0 = ¾¾¾¾¾¾ = 483,68

                1,1

            Расчётные изгибающие моменты Моп и Мпр определяются по формулам:

            q0 · L2p      633,4 · 0,842

Моп = - ¾¾¾ = - ¾¾¾¾¾¾ = - 37,0 кНм2

              12                    12

         q0 · L2p     633,4 · 0,842

Мпр = ¾¾¾ = ¾¾¾¾¾¾ = 19,0 кНм2

             24                 24

            Поперечную перерезывающую силу в ростверке на грани сваи можно определить по формуле:


       q0 · Lp      633,4 · 084

Q = ¾¾¾  = ¾¾¾¾¾¾ = 266,02 кН , где:

           2                    2

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка

Lp - расчётный пролёт [м]

            Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

            Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01 - 84 п. 3.18.         Вычисляем коэффициент  am:

                M

am = ¾¾¾¾¾¾ , где:

          Rb · b · h20

М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.

                19,0 · 106

am = ¾¾¾¾¾¾¾¾¾¾¾ = 0,01

          11,5 · 103 · 1,5 · 0,552

            При  am = 0,01 находим  h = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле:

              M

As = ¾¾¾¾¾ , где:

         Rs · h · h0

М - момент в пролёте

Rs - рассчётное сопротивление арматуры


                19 · 106

As = ¾¾¾¾¾¾¾¾¾  = 117,5 мм2

         365 · 0,995 · 0,55

            Принимаем арматуру класса А -III 8Æ7 мм (As = 308 мм2). Так - как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру Æ12 мм, где As = 905 мм2.

            Сечение на опоре:

·     

·      0 = 600 - 50 = 550 мм

            Вычисляем коэффициент  am:

                М                          37 · 106

am = ¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾ = 0,01

          Rb · b · h20       11,5 · 103 · 1,5 · 0,55

            Находим  h = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А - III, Rs = 360 МПа:

              M                   37 · 106

As = ¾¾¾¾¾ = ¾¾¾¾¾¾¾¾ = 235 мм2

         Rs · h · h0     360 · 0,995 · 550

            Принимаем стержни из арматуры А - III, 8Æ10 мм (As = 628 мм2).

4.2.1

            Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А - I с шагом S = 310мм.

4.2.2

            Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F £ a · Rbt · Um · h0

F - продавливающая сила

a - коэффициент, принимаемый равным 1

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

            При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 · Fsw = 633,4 + 0,8 · 6,615 =638,39

Fd = F

            Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:

Fsw = å Rsw · Asw , где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А - I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 · Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2

Fsw = 3 · 175 · 103 · 0,0000126 = 6,615

F = 633,4 < 990, что удовлетворяет условию расчёта на продавливание.


4.3

1)    Байков АП

2) 

3)    Бородачёв ОЛ


5.

5.1

            Одной из целей анализа является определения схемы разбивки здания на участки для организации поточного строительства. За участок, как правило, принимают целый пролёт или температурный блок. Желательно, чтобы объект был разбит на участки, количеством не менее 3 и не более 5.

            Другой задачей анализа является определение видов конструктивных элементов, их размеров, характеристик для решения вопросов по технологии и организации строительства.

            Все данные о сборных элементах, составленных на основании конструктивных чертежей и каталогов типовых конструкций заносятся в таблицу.

            Нормативная продолжительность строительства устанавливается по “Нормам продолжительности строительства” (СН - 440 - 79). В них указываются сроки строительства зданий и сооружений в разрезе отраслей промышленности с выделением подготовительного и основного периодов. Продолжительность сроков строительства здания определяется по строке норм, соответствующих конструкции и общей площади квартир всего здания для средней этажности, определяемой по формуле:

          å (Sn · Эn)

Эср = ¾¾¾¾¾ , где:

                Sзд

Sn - площадь застройки участка,

Эn - число этажей отдельного участка,

Sзд - площадь застройки всего здания,

n - порядковый номер отдельного участка.

            По расчету нормативный срок возведения объекта равен 6 лет.


Наименование

Эскиз элемента

Объём материала

Масса

Общее количество

Расход материала, м3

элементов

в 1 элементе, м3

элемента, т

элементов, шт.

всего

1 блок - секция

Сваи С10-30

0,63

1,60

5852

4849,2

234,5

Блоки стен подвала БС-24.6.6-Т

0,815

1,96

3696

3012,24

125,51

Цокольные блоки ЦБ-2-77

1,338

2,36

949

1269,22

63,46

Перемычки БПБ21-27.п-1

0,114

0,28

13476

1536,26

74,89

Лестничные площадки ИЛП43-2

1,58

0,68

200

316

15,8

Лестничные марши ЛМ28-11

0,58

1.28

340

197,2

9,86

Шахты лифтов ШЛС28-40

1,86

4,65

220

361,6

18,04

Санкабины СК-13

1,307

3,20

720

941,04

47,05

Перекрытия

0,96

2,40

8640

8294,4

414,72

Покрытия

0,96

2,40

960

1198,08

46,08

Перегородки гибсобетонные

1,43

1,79

3322

4750,46

231,66

Кирпичная кладка

0,018

0,003

22292

401,25

1087

Двери

0,828

0,05

5632

4663,29

226,044

Окна

1,86

0,025

3740

5096,4

254,87

Витражи

4,96

0,20

18

106,62

Полы

36200

1810

Обои

154640

7732

Остекление

5096,4

254,82

Кровля

79420

3971


5.2

            В неё включают весь комплекс работ, необходимых для возведения и сдачи объекта в эксплуатацию, начиная с планировки площадки и кончая благоустройством территории.

            Объемы общестроительных работ устанавливаются  на основании архитектурных и конструктивных чертежей в натуральных единицах измерения.

            Объёмы внутренних специальных работ (санитарно - технических и электромонтажных, а также работ по газификации, телефонизации, радиофикации) определяют в денежном выражении, исходя из строительного объёма здания и укрупнённых показателей их стоимости на 1 м3 здания по формуле:

Vс = Cс · Vзд , где:

Vс - объём специальных работ в тыс. руб.

Cс - стоимость специальных работ на 1 м3 здания в тыс. руб.

Vзд - строительный объём здания в м3.

Для жилого здания:

            Отопление и вентиляция:

Vс = 0,42 · 186963 = 78524,46 тыс. руб.

            Водопровод и канализация:

Vс = 0,48 · 186963 = 89742,24 тыс. руб.

            Электроосвещение:

Vс = 0,25 · 186963 = 46770,75 тыс. руб.

            Телефон, радио:

Vс = 0,11 · 186963 = 20565,43 тыс. руб.

Для встроенного помещения:

Отопление и вентиляция:

Vс = 6,6 · 16390 = 9834 тыс. руб.

            Водопровод и канализация:

Vс = 0,24 · 16390 = 3933,6 тыс. руб.

            Электроосвещение:

Vс = 0,36 · 16390 = 5900,4 тыс. руб.

            Телефон, радио:

Vс = 0,12 · 16390 = 1966,8 тыс. руб.

            Объём работ по монтажу технического оборудования определяется по формуле:

Vоб = Cзд · Vзд · К1 · К2 , где:

Vоб - объём работ по монтажу технического оборудования, тыс. руб.

Cзд - стоимость СМР 1 м3

Vзд - строительный объём здания.

К1 - коэффициент, учитывающий объём СМР в общей стоимости здания.

К2 - коэффициент, учитывающий удельный вес монтажа технологического оборудования в общей стоимости, К2 = 0,1 ~ 0,15.

Для жилого здания:

Vоб = 33 · 186963 · 0,15 · 0,1 = 92546,68 тыс. руб.

Для встроенного помещения:

Vоб = 23 · 16390 · 0,15 · 0,1 = 5654,55 тыс. руб.

            Все расчёты объёмов приведены в таблице “Ведомость объёмов и трудоёмкости работ”




Наименование

Объём

Выработка

Трудоёмкость

работ

работ

чел/день

маш/см.

чел/день

маш/см.

Планировка площадки бульдозером, м2

всего

1 б/с

12700

635

370

34,32

1,71

Разработка грунта экскаватором, м3

всего

1 б/с

31520

1576

210

150

7,5

Разработка грунта вручную, м3

всего

1 б/с

7

0,35

2,5

2,8

0,14

Забивка свай, м3

всего

1 б/с

9653,52

482,67

2

4826,76

241,3

Устройсво монолитных ростверков, м3

всего

1 б/с

2487,24

124,36

1,1

2261,12

113,05

Общая механинизиро-ванная засыпка, м3

всего

1 б/с

7300

365

270

27,03

1,35

Ручная обратная засыпка, м3

всего

1 б/с

9

0,45

3,5

2,5

0,12

Кирпичная кладка, м3

всего

1 б/с

22292

1087

2

11146

543,5

Монтаж перемычек, м3

всего

1 б/с

11400

567

2

5700

283,5

Монтаж плит покрытия, м3

всего

1 б/с

9600

460,8

2

4800

230,4

Монтаж лестничных площадок,  м3

всего

1 б/с

316

15,8

2

158

7,9

Монтаж лестничных маршей,  м3

всего

1 б/с

197,2

9,86

2

98,6

4,93

Монтаж гибсобет. перегородок,  м3

всего

1 б/с

4750

231,66

7

678,63

33,09

Устройство рулонной кровли,  м2

всего

1 б/с

79420

3971

12

6618,33

330,91

Заполнение оконных проёмов,  м2

всего

1 б/с

5096,4

254,82

15

339,76

1698

Заполнение дверных проёмов,  м2

всего

1 б/с

4663,29

226,04

10

466,32

22,6

Остекление,  м2

всего

1 б/с

4100

205

11

372,72

18,63

Витражи,  м2

всего

1 б/с

106,624

-

15

7,101

-

Штукатурка,  м2

всего

1 б/с

59160

2693

10

5916

269,3

Малярные работы,  м2

всего

1 б/с

154640

7732

18

8591,1

429,55

Облицовочные работы,  м2

всего

1 б/с

6280

314

5

1256

62,8

Устройство линоле-умных полов,  м2

всего

1 б/с

36200

1810

10

3620

181

Устройство мозаичных полов,  м2

всего

1 б/с

840

-

9

93,33

-

Сантехнические работы, тыс. руб.

всего

1 б/с

250620

12531

60

4177

208,8

Электромонтажные работы, тыс. руб.

всего

1 б/с

290600

14530

130

2235,38

111,76

Монтаж лифта,

 тыс. руб.

всего

1 б/с

211042

10552

49

4306,93

215,3

Благоустройство,

тыс. руб.

всего

1 б/с

527840

26392

0,03

15835,2

791,76

Озеленение,

тыс. руб.

всего

1 б/с

52984

8649

0,015

1589,52

7947


Пред--

Характеристика работ

Бригада

Основные машины

 

шеств.

Код

Наименование

Объём

Трудоёмкость

профес-

кол-во чел

сменность

наим.

количест-

работы

раб.

работ

чел/дн

маш/см

Дни

сия

в 1 смене

машин

во

-

1

Земляные работы, планировка площадки бульдозером

635

1,71

1,71

машинист экскават.

1

1

бульдозер

1

1

2

Выработка грунта экскаватором

1576

7,504

3,75

машинист экскават.

1

2

экскаватор

1

2

3

Забивка свай

482,67

241,33

4,022

3

1

копер

1

3

4

Устройство монолит-ного ростверка

124,36

113,05

2,35

бетонщик

24

2

вибратор

3

4

5

Устройство стен подвала из блоков

150,612

1,35

1,35

машинист экскават.

1

1

кран

1

5

6

Механизированная засыпка

365

60,24

12,048

монтажник

5

1

кран

1

6

7

Кирпичная кладка 1б/с

1087

543,5

14,08

каменщик

37

1

кран

1

7

8

Монтаж перемычек

76,813

38,4

6,4

монтажник

3

2

кран

1

8

9

Монтаж лестниц

9,86

4,93

0,82

монтажник

3

2

кран

1

9

10

Монтаж лестничных площадок

15,8

7,9

1,3

монтажник

3

2

кран

1

10

11

Устройство гибсобе-тонных перегородок

237,52

33,93

5,65

монтажник

3

2

кран

1

11

12

Устройство перекрытий

414,72

207,36

12,96

монтажник

8

2

кран

1

12

13

Устройство покрытий

46,08

23,04

3,84

монтажник

3

2

кран

1

13

14

Устройство рулонной кровли

3971

330,91

13,23

кровель-щик

5

1

14

15

Заполнение оконных проёмов

254,82

16,988

1,13

плотник

15

1

15

16

Остекление

23,16

1,54

стекольщик

15

1

16

17

Двери

226,044

22,60

1,50

плотник

15

1

17

18

Санузлы

47,05

9,41

3,136

монтажник

3

1

кран

1

18

19

Штукатурка

2958

295,8

14,79

штукатур

20

1

19

20

Малярные работы

7732

429,5

32,37

маляр

25

1

20

21

Облицовочные работы

314

62,8

3,14

20

1

21

22

Устройство линолеумных полов

1810

181

12,06

плотник

15

1

22

23

Устройство мозаичных полов

840

93,33

13,33

мозаичник

7

1

23

24

Сантехнические работы

12531

208,85

13,09

сантехник

15

1

24

25

Электромонтажные работы

14530

111,76

13,97

электро-монтажник

8

1

25

26

Монтаж лифта

10552

215,34

14,35

монтажник

15

1

26

27

Благоустройство

26392

791,76

19,79

бетонщик

20

2

27

28

Озеленение

2649,12

39,73

6,62

бетонщик

6

1


            Назначение сроков выполнения работ производится в следующем виде:

1) 

2) 

               Qвед

Tвед = ¾¾¾¾¾ , где:

           Rвед · Пвед

Tвед - продолжительность ведущего процесса,

Qвед, Rвед, Пвед - соответственно, трудоёмкость, состав бригады и сменность ведущего процесса

Tвед = 543,5 / 37 · 1 = 14,68 дней

3) 

Tвед = Ti , где:

Ti - продолжительность i-го процесса (i = 1,2,3.....n)

4) 

            Qi

Ri = ¾¾¾¾ , где:

        Tвед · Пi

Qi, Ri, Пi - соответственно, трудоёмкость, состав бригады и сменность i-го процесса (i = 1,2,3.....n).

5)  i :

         qi

ti = ¾¾¾ , где:

      Ri · Пi

qi - трудоёмкость выполнения i работы на участке.

5.3

            Цель построения безмаштабного сетевого графика сводится к выявлению правильной технологической увязки и последовательности отдельных работ. При этом учитывается принятая схема строительного процесса, количество используемых строительных машин.

            Для построения сетевого графика в масштабе времени перестраиваем безмаштабный сетевой график, учитывая при этом принцип непрерывности работ по участкам. Расчёт сетевого графика ведём табличным методом.

            Введём следующие условные обозначения:

i, j - код работы,

tij - продолжительность выполнения i, j работы,

tiрjн - раннее начало i, j работы,

tiрjо -  раннее окончание i, j работы,

tiпjн - позднее начало i, j работы,

tiпjо - позднее окончание i, j работы,

Riпj - полный резерв времени i, j работы,

Ricj - свободный резерв времени i, j работы,

Kiрjн - календарная дата начала i, j работы.

            Для всех работ сетевого графика:

tiрjо = tiрjн + tij

            Рассчитаем параметры - tiрjо, tiрjн  для всех работ сетевого графика:

tiпjн = tiпjо - tij ; t9п10н = t9п10о - t9,10

            Определяем параметры - Riпj , Riсj

Riпj = tiпjо - tiрjо ; R8п9 = t8п9о - t8р90

Riпj = tiпjн - tiрjн ; R8п9 = t8п9н - t8р9н

            Для исходной работы дата её начала устанавливается по директивному сроку начала возведения объекта - Kiрjн

Kiрjн = Kирснх + tiрjн + tв

Kирснх - дата начала исходной работы

tв - выходные и праздничные дни.

Расчёт сетевого графика

Кол-во предш.

Шифр

работ

i

j

tij

tiрjн

tiрjо

tiпjн

tiпjо

Riпj

Ricj


5.4

5.4.1         подкрановых путей

1) 

B = Rпов + Lбез3]

В - минимальное расстояние от подкрановых путей до наружной стены здания,

Rпов - необходимый радиус поворота стрелы крана с учётом ограничений в целях безопасности работ, принимаемой по паспорту крана.

Lбез - минимальное расстояние до наиболее выступающих частей здания, табеля от базы крана (не менее 0,7 м)

B = 30 + 1 = 31 м

            В случае применения самоходных стреловых кранов значение в формуле относится к оси поворота кабины крана.

B = 16,2 + 1 = 17,2 м

2)  ³ 1,5 · h + 0,4 = 4 м.

h - глубина котлована - 2,4 м.

1. 

2. 

3. 

4. 

Lбез - минимальное расстояние от базы крана до здания

Вк - ширина колеи подкрановых путей (по паспорту крана)

h - глубина котлована, 2,4 м.

Lб - расстояние от откоса котлована до нижнего края балластной призмы

Lк - расстояние от рельса до края балластной призмы

3) 

Lnn = Lkp + Hkp + 2 · Lтop + 2 · Lтуп

Lkp - расстояние между крайними стояками крана по радиусу действия стрелы

Hkp - длина базы крана по паспорту

Lтop - величина тормозного пути, не менее 1,5 м

Lтуп - расстояние от конца рельса до тупиков, 0,5 м

Lnn = 60+6+2·1,5+2·0,5 = 70 м - башенный кран

Lnn = 28+4,4+2·1,5+2·0,5 = 36,4 м - пневмокран

5.4.2

            Расчёт ведётся по формуле: Rоп = Rmax + 0,5 · Lmax + Lбез , где:

Rmax - максимальный рабочий вылет крюка крана с учётом ограничений поворота

Lmax - половина длины наибольшего перемещаемого груза, 3 м

Lбез - дополнительное расстояние безопасности на случай рассеивания падающего груза, зависящее от вылета стрелы подъёма, 10 м

Rоп = 30+0,5·3+1 = 32,5 м - башенный кран

Rоп = 12,7+0,5·3+1 = 15,2 м - пневмокран

            Опасные зоны рассчитываются также на случай падения стрелы крана:

Rоп = Rпс + 5 м , где: Rпс - длина стрелы.

Rоп = 30 + 5 = 35 м - башенный кран

Rоп = 12,4 + 5 = 14,4 м - пневмокран

5.4.3

            Для проектирования стройгенплана необходимо рассчитать площади при объектных складских площадок для материалов и конструкций открытого хранения. Для расчёта площади склада предварительно определяют объёмы складируемых материалов.

           Робщ

Рскл = ¾¾¾ · Тн · К1 · К2

              Т

Робщ - количество материалов и конструкций, необходимых для выполнения работ в расчётный период, Робщ = 90028,469

Т - продолжительность расчётного периода по календарному плану (в днях)

Тн - норма запасов материалов (на 25 дней)

К1 - коэффициент неравномерности поступления материалов, Кн = 1,1

К2 - коэффициент неравномерности производственного потребления в течении расчётного периода, К2 = 1,3.

          90028,489

Рскл = ¾¾¾¾¾ · 25 · 1,1 · 1,3 = 2031,89

               102

            Площадь открытого склада на 1 б/с:

Fскл = Pскл · q , где:

q - норма складирования на 1 м2 площади пола склада с учётом проездов и проходов.

¨   

¨   

¨   

¨   

¨   

Fскл = 203,189 · 2,35 = 477,49

Fскл = 203,189 · 1,50 = 304,783

Fскл = 203,189 · 2,00 = 406,378

Fскл = 203,189 · 2,50 = 507,9

Fскл = 203,189 · 2,10 = 426,69

5.4.4

            Расчёт сводится к определению необходимого расхода воды для производственных, хозяйственно - бытовых, противопожарных нужд строительной площадки и подборов диаметров трубопроводов

            Суммарный расчётный расход воды (в л/сек):

Qобщ =  Qпр + Qхоз + Qком = 1,07 + 15 + 120,46 = 136,53

Qпр - расход воды на производственные нужды.

                        gпр · V · K1

Qпр = 1,2 · å · ¾¾¾¾¾ , где:

                          8·3600   

1,2 - коэффициент на неучтённые расходы воды

8 - число часов в смену

3600 - число секунд в 1 часе

gпр - удельный производственный расход воды

V - объём работ в смену с расходом воды

K1 - коэффициент неравномерности расхода

gпр = (187,5 + 300 + 6 + 0,75 + 625 + 10)

Qпр = 120,46

Qхоз - потребление воды на хозяйственно - бытовые нужды

              N         n1 · K1       N

Qхоз = ¾¾¾ · ¾¾¾ + ¾¾¾ · n2 · K3 , где:

           3600         8,2        3600

N - наибольшее количество рабочих в смену

n - норма потребления воды на одного человека в смену

n2 - норма потребления на приём одного душа

К1 - коэффициент неравномерности потребления воды

К3 - коэффициент пользующихся душем

             85        2 · 64         85

Qхоз = ¾¾¾ · ¾¾¾ + ¾¾¾ · 50 · 0,3 = 1,07

           3600         8,2        3600

            Расход воды на пожаротушение определяется из расчёта действий двух струй из гидрантов, устанавливаемых в колодцах водопроводов через 100 - 150м, по 5 л/с на каждую струю. Расход воды на пожарные цели составляет 15л/с.

5.4.4.1

          ___________

           4000  Qобщ

D = Ö ¾¾¾¾¾¾ , где:

             p · V

Qобщ - общий суммарный расход воды, л/с

p = 3,14

V - скорость движения воды по трубам, м/с

          ____________

           4000 · 136,53

D = Ö ¾¾¾¾¾¾¾  = 15 см.

             3,14 · 1,5

5.4.5

            Расчёт мощности силовых потребителей определяется по формуле:

             Pc · n · Kc

Rсп = å ¾¾¾¾¾ , где:

                 cos j

Рс - удельная установленная мощность на одного потребителя

n - число одновременных потребителей

Kc - коэффициент спроса

cos j - коэффициент мощности

Rсп = 135,98

            Расчёт мощности технологических потребителей электроэнергии производится по формуле:

              P · V · Кт

Rтех = å ¾¾¾¾¾ , где:

            Tmax · cos j

P - удельный расход электроэнергии

V - объём работ за год

Кт - коэффициент спроса

Rтех = 8707, 31 кВтч

            Освещения не рассчитываем, т.к. данное здание находится на центральной улице города и площадка освещается уличными фонарями.

5.4.6

            Для расчёта потребности во временных административных и бытовых зданий необходимо исходить из максимального суточного количества работающих:

Nобщ = 1,05 · (Nоп + Nвп + Nитр + Nсл + Nмоп)

Nоп - численность рабочих согласно основному производству по графику движения рабочих кадров, Nоп = 85 чел.

Nвп - численность рабочих вспомогательного производства, принимается 20% от Nоп, Nвп = 85 · 0,2 = 17 чел.

Nитр - численность инженерно - технического персонала, Nитр = 10% · (Nоп + Nвп)

Nитр = 0,1 · (85 +17) = 10 чел.

Nсл - численность служащих, Nсл = 5% · (Nоп + Nвп) = 0,05 · (85 +17) = 5 чел.

Nмоп - численность младшего обслуживающего персонала (уборщики, вахтеры и др.), Nмоп = 3% · (Nоп + Nвп) = 0,03 · (85 +17) = 3 чел.

Nобщ = 1,05 · (85 + 17 + 10 + 5 + 3) = 126 чел.

            Расчётное количество работающих в сменах принимается: при односменной работе - Nсм = Nобщ, при двухсменной:

N1 = 0,7 · Nобщ = 0,7 · 126 = 88 чел.

N2 = 0,3 · Nобщ = 0,3 · 126 = 38 чел.

            По составу и численности работающих определяется набор временных зданий для конторских помещений по общей численности (Nсл + Nитр) в смену, для душевых помещений - по количеству работающих в максимальной смене в объёме 30 - 40% от (Nоп + Nвп) = 0,3 · (85 +17) = 31 чел.

            Для сушки спецодежды и обуви - от числа Nоп + Nвп, работающих в максимальную смену.

            Контора: (5 м2 на чел.)

Nитр + Nсл = 15 чел · 5м2 = 75 м2

            Бытовые помещения:

· Душевые

Мужчинам  - 12 чел на одну душсетку, 60 чел / 12 = 5 душсеток,

                      60 чел · 0,43 = 25,8 м2

Женщинам - 12 чел на одну душсетку, 25 чел / 12 = 2 душсетки,

                      25 чел · 0,43 = 10,75 м2

· Умывальники

Мужчинам  - 15 чел на один кран, 60 чел / 15 = 4 крана,

                      60 чел · 0,05 = 3 м2

Женщинам - 15 чел на один кран, 25 чел / 15 = 2 крана

                      25 чел · 0,05 = 1,25 м2

· Туалеты

Мужчинам  - 15 чел на одно очко, 60 чел / 15 = 4 очка,

Женщинам - 15 чел на одно очко, 25 чел / 15 = 2 очка.

· Проходная - 5 м2

· Бытовые передвижки

Мужчинам  - 60 чел · 1 м2 = 60 м2

Женщинам - 25 чел · 1 м2 = 25 м2

· Помещения для сушки одежды

Мужчинам  - 60 чел · 0,2 м2 = 12 м2

Женщинам - 25 чел · 0,2 м2 = 5 м2

· Помещения для обогрева

Мужчинам  - 60 чел · 1 м2 = 60 м2

Женщинам - 25 чел · 1 м2 = 25 м2

· Гардеробная

Мужчинам  - 60 чел · 0,9 м2 = 54 м2

Женщинам - 25 чел · 0,9 м2 = 22,5 м2


5.5

1)     Дикман ЛИ

2) 

3) 

4) 


6.

(* Увы, часть смет выполнена в рукописном виде *)

Объектная смета на строительство одной блок - секции

Наименование работ

Прямые расходы в ценах 1984 г

С накладными расходами и плановыми накоплениями в ценах 1984 г

Общестроительные работы

306927

398111

Электромонтажные работы

12890

14530

Радиофикация

165

250

Телевидение

195

264

Слаботочная канализация

465

600

Монтаж лифта

11408

12363

Итого

332050

426118

В ценах 1996 г с коэфф. 8354

2773945700

3559789700

            Смету составила Молчанова ТА


Объектная смета на жилую часть всего дома

Наименование работ

Прямые расходы в ценах 1984 г

С накладными расходами и плановыми накоплениями в ценах 1984 г

Общестроительные работы

6138540

7962220

Электромонтажные работы

257800

290600

Радиофикация

3300

5000

Телевидение

3900

5280

Слаботочная канализация

9300

12000

Монтаж лифта

228160

247260

Итого

6644100

8522360

В ценах 1996 г с коэфф. 8354

55504811000

71195795000

            Смету составила Молчанова ТА


Объектная смета на встроенные помещения всего дома

Наименование работ

Прямые расходы в ценах 1984 г

С накладными расходами и плановыми накоплениями в ценах 1984 г

Общестроительные работы

568172

731760

Водопровод хозпитьевой

4036

4928

Горячее водоснабжение

1972

2412

Канализация

2576

3056

Канализация производственная

6496

7948

Канализация дождевая

1016

1244

Строительные работы

4492

5836

Отопление

6992

8556

Теплоснабжение

1460

1612

Тепловой пункт

6504

7732

Вентиляция

19080

23244

Строительные работы

7124

11108

Электромонтажные работы

20232

23460

Электросиловое оборудование

15180

16764

Телефонизация

732

1052

Радиофикация

1800

1956

Телевидение

3544

3592

Часофикация

532

704

Пожарная сигнализация

13620

14760

Охранная сигнализация

8492

10856

КиП

1748

1804

Автоматика

1640

1800

Мебель и инвентарь

130536

130536

Технологическое оборудование

16124

16432

Итого

844100

1033155

В ценах 1996 г с коэфф. 8354

7051611400

8630976800

            Смету составила Молчанова ТА


Объектная смета на жилую часть всего дома

Наименование работ

Стоимость, руб

в ценах 1984 г

в ценах 1996 г

Стоимость жилого дома с встроенными помещениями

9555515

79826772000

Стоимость встроенных помещений

1033155

8630976800

Стоимость жилой части

8522360

71195795000

Стоимость одной блок - секции

426118

3559789700

Стоимость 1 м2 жилья

226

1891178

Стоимость 2 комнатной квартиры

10101

84383754

Стоимость 3 комнатной квартиры

12881

107607870


7.

7.1

            Необходимость охраны окружающей Среды для блага человека возникла в результате отрицательных последствий деятельности самого человека. Ошибочные действия общества по отношению к природе часто приводят к непредсказуемым последствиям, в конечном итоге негативно обращающимися против самого общества и порождающего необходимость проведения мероприятий по охране природы. Развитие промышленного производства потребовало организации добычи огромного количества сырья, создание мощных источников энергии, что привело к истощению запасов целого ряда полезных ископаемых.

            Вместе с сырьевой и энергетической проблемой возникла новая проблема - загрязнение окружающей Среды отходами промышленности, сельского хозяйства, транспорта, строительства и т.д. Интенсивному загрязнению подвергается атмосфера, вода, почва.  Эти загрязнения достигли высоких уровней и угрожают не только растительному миру, но и здоровью самого человека.

            Изменения, происходящие в природе в результате деятельности человека  приобрели глобальный характер и создали серьезную угрозу нарушения природного равновесия. Такое положение может стать препятствием на пути дальнейшего развития человеческого общества и даже ставят вопрос его существования.


7.2

7.2.1Общие положения

            Здания и сооружения оказывают большое влияние на окружающую среду. Их появление вызывает значительные изменение в воздушной и водной средах, в состоянии грунтов участка строительства. Меняется растительный покров - на смену уничтожаемому природному приходят искусственные посадки. Меняется режим испарения влаги. Средняя температура в районе застройки постоянно выше, чем вне ее.

            Непродуманные технологии, организация и само производство работ определяют большие затраты энергии и материалов, высокую степень загрязнения окружающей среды. Процесс строительства является относительно непродолжительным. Взаимодействие здания или сооружения с окружающей средой, его характер и последствия определяется в период длительной эксплуатации. Отсюда вытекает важность этого периода в определении экономичности объекта, т.е. каким образом отразится на состоянии окружающей среды не только появление, но и его длительное функционирование.

            В процессе проектирования необходим тщательный учет экономических последствий принимаемых решений. Экологический подход должен характеризовать проектирование, строительство, и эксплуатацию здания. При проектировании, в свою очередь, он должен быть выдержан при решении как объемно - планировочном, так и конструктивном; при выборе материалов для строительстве, при определении технологии возведения и т.д.

            Усилия всех руководящих органов, как центральных, так и на местах, должны быть направлены на то, чтобы рачительное отношение к природе стало предметом постоянной заботы коллективов, руководителей и специалистов всех отраслей хозяйства, нормой повседневной жизни людей.

            Практическое осуществление задач по охране окружающей Среды может быть успешным только при условии объединения усилий специалистов всех отраслей народного хозяйства, основанных на четком понимании экологических проблем и знаниях, которые были получены в процессе обучения в школе и высшем учебном заведении. Таким образом, следует говорить о необходимости изучения и выявления экологических аспектов в любой деятельности человека, в том числе и об инженерной экологии, в рамках которой должны рассматриваться экологические аспекты деятельности отраслей промышленности и строительства. От специалистов - строителей зависит характер воздействия на окружающую среду гражданских и промышленных зданий и их комплексов - промышленных объектов, городов и поселков. Инструкцией о составе, порядке разработки, согласования и утверждения проектно - сметной документации на строительство предприятий, зданий и сооружений (СНиП 1.02.01-85) уже предусмотрена разработка мер по рациональному использованию природных ресурсов. Природоохранные требования введены и в ряд других нормативных документов (СНиП 2.06.15-85, СНиП 3.01.01-85 и др.).

            К мероприятиям по охране окружающей природной среды относятся все виды деятельности человека, направленные на снижение или полное устранение отрицательного воздействия антропогенных факторов, сохранение, совершенствование и рациональное использование природных ресурсов. В строительной деятельности человека к таким мероприятиям следует отнести:

¨   

¨   

¨   

¨   

¨   

¨   

¨   

¨   

¨   

            Мерой успеха в достижении указанных целей являются экологические, экономические и социальные результаты. Экологический результат - это снижение отрицательного воздействия на окружающую среду, улучшение ее состояния. Он определяется снижением концентрации вредных веществ, уровня радиации, шума и других неблагоприятных явлений.

            Экономические результаты определяют рациональное использование и предотвращение уничтожения или потерь природных ресурсов, живого и овеществленного труда в производственной и непроизводственной сферах хозяйства, а также в сфере личного потребления.

            Социальный результат может быть выражен в повышении физического стандарта, характеризующего население; сокращении заболеваний; увеличении продолжительности жизни людей и периода их активной деятельности; улучшении условий труда и отдыха; сохранении памятников природы, истории и культуры; создании условий для развития и совершенствования творческих возможностей человека, роста культуры.

            Место строительства жилого проектируемого дома выбрано жилом микрорайоне, удаленном от основного промышленного производства на семь километров, и расположенного с подветренной стороны. Рядом с домом запроектированы широкие автомагистрали, которые продуваются ветром, что обеспечивает обмен воздуха и отсутствие мест застоя воздуха.

            Места стоянок автомобилей вынесены к основным автомагистралям и выведены из внутриквартальных стоянок, что обеспечит уменьшение загазованности в жилой зоне.

            Посадки деревьев и кустарников между автодорогой и жилым домом, запроектированные в благоустройстве территории, а также внутри квартала, ведут к защите дома от городского шума и шума автотранспорта. Зеленые насаждения ведут к улучшению газового состава воздуха и его очищению.

            При начале строительных работ растительный слой толщиной 40 см собирается и вывозится на площадку складирования в поселке Сосновка на расстоянии 1 км. Грунт при разработке котлована под строительство дома вывозится для вертикальной планировки строящегося жилого квартала, а также на площадку складирования для обратной засыпки пазух фундаментов строящегося дома в поселке Сосновка на расстояние 1 км.

            Водоснабжение жилого дома предусмотрено из городской сети артезианского водоснабжения с полным циклом очистки и обеззараживания воды. Хозфекальные воды сбрасываются по общегородским сетям

канализации на очистные сооружения, где проходят полный цикл очистки и утилизации.

            Жилой дом запроектирован такой ориентацией, чтобы создать экран для защиты от шума дворовую часть здания, а также от преобладающих ветров. Основные конструкции жилого дома запроектированы из природных экологически чистых материалов (красный керамический кирпич, сборные железобетонные конструкции, гипсовые перегородки, деревянные конструкции окон, дверей, бумажные обои, глазурованная плитка).

            Для экономии тепловой энергии жилой дом ориентирован таким образом, что одна сторона дома получает солнечную энергию до 12 часов, а другая половина дома после 12 часов. Квартиры сблокированы таким образом, что они одной стеной выходят на фасад, а тремя стенами блокируются друг с другом. Наружные стены запроектированы с укладкой утеплителя, что улучшает энергосбережение и уменьшает теплопотери здания.

            Вышеперечисленные мероприятия по охране окружающей природы и снижению ее загрязнения дают возможность обеспечить безболезненное развитие цивилизации и человеческого сообщества в будущем.


7.3

            Действующая система охраны труда (трудовое законодательство, производственная санитария и техника безопасности) обеспечивает надлежащие условия труда рабочим - строителям, повышение культуры производства, безопасность работ и их облегчение, что способствует повышению производительности труда. Создание безопасных условий труда в строительстве тесно связано с технологией и организацией производства.

            В строительстве руководствуются СНиП, который содержит перечень мероприятий, обеспечивающих безопасные методы производства строительных и монтажных работ. Допуск к работе вновь принятых рабочих осуществляется после прохождения ими общего инструктажа по технике безопасности, а также инструктажа непосредственно на рабочем месте. Кроме этого, рабочие обучаются безопасным методам работ в течение трех месяцев со дня поступления, после чего получают соответствующие удостоверения. Проверка знаний рабочих техники безопасности проводится ежегодно.

            Ответственность за безопасность работ возложена в законодательном порядке на технических руководителей строек - главных инженеров и инженеров по охране труда, производителей работ и строительных мастеров. Руководители строительства обязаны организовать планирование мероприятий по охране труда и противопожарной технике и обеспечить проведение этих мероприятий в установленные сроки.

            Все мероприятия по охране труда осуществляются под непосредственным государственным надзором специальных инспекций (котлонадзора, госгортехнадзора, горной, газовой, санитарной и технической, пожарной).

            Для обеспечения безопасных условий производства земляных работ необходимо соблюдать следующие основные условия безопасного производства работ. Земляные работы в зоне расположения действующих подземных коммуникаций могут производиться только с письменного разрешения организаций, ответственных за эксплуатацию. Техническое состояние землеройных машин должно регулярно проверяться с своевременным устранением обнаруженных неисправностей. Экскаватор во время работы необходимо располагать на спланированном месте. Во время работы экскаватора запрещается пребывание людей в пределах призмы обрушения и в зоне разворота стрелы экскаватора. Получающиеся в работе "козырьки" необходимо немедленно срезать.

            Загрузка автомобилей экскаватором производится так, чтобы ковш подавался с боковой или задней стороны кузова, а не через кабину водителя. Передвижение экскаватора с загруженным ковшом запрещается.

            При свайных работах наибольшее внимание должно обращаться на прочность и устойчивость копров, кранов, правильность и безопасность подвеса молота, надежность тросов и растяжек.

            Перед работой копер должен быть закреплен противоугонными устройствами. На каждом копре указываются предельные веса молота и сваи. На копрах с механическим приводом должны устанавливаться ограничители подъема. Перед пуском молота в работу дается предупредительный звуковой сигнал; на время перерыва в работе молот следует опустить и закрепить.

            Сборка, передвижка и разборка копра производится под руководством ИТР. К работе на копрах допускаются только рабочие, прошедшие специальное обучение.

            К монтажу сборных конструкций и производству вспомогательных такелажных работ допускаются рабочие, прошедшие специальное обучение и достигшие 18-летнего возраста. Не реже одного раза в год должна проводиться проверка знаний безопасности методов работ у рабочих и инженерно-технических работников администрацией строительства. Основные решения по охране труда, предусмотренные в проекте организации работ, должны быть доведены до сведения монтажников.

            К монтажным работам на высоте допускаются монтажники, прошедшие один раз в году специальное медицинское освидетельствование. При работе на высоте монтажники оснащаются предохранительными поясами. Под местами производства монтажных работ движение транспорта и людей запрещается. На всей территории монтажной площадки должны быть установлены указатели рабочих проходов и проездов и определены зоны, опасные для прохода и проезда. При работе в ночное время монтажная площадка освещается прожекторами. До начала работ должна быть проверена исправность монтажного и подъемного оборудования, а также захватных приспособлений. Грузоподъемные механизмы перед пуском их в эксплуатацию испытывают ответственными лицами технического персонала стройки с составлением акта в соответствии с правилами инспекции Госгортехнадзора. Такелажные и монтажные приспособления для подъема грузов надлежит испытывать грузом, превышающим на 10% расчетный, и снабжать бирками с указанием их грузоподъемности. Все захватные приспособления систематически проверяют в процессе их использования с записью в журнале.

            Оставлять поднятые элементы на весу на крюке крана на время обеденных и других перерывов категорически запрещается.

При производстве электросварочных работ следует строго соблюдать действующие правила электробезопасности и выполнять требования по защите людей от вредного воздействия электрической дуги сварки.

            Вновь поступающие рабочие - каменщики помимо вводного инструктажа и инструктажа на рабочем месте должны пройти обучение безопасным способам работы по соответствующей программе.

            Рабочие места каменщиков оборудуются необходимыми защитными и предохранительными устройствами и приспособлениями, в том числе ограждениями. Открытые проемы в стенах и перекрытиях ограждаются на высоту не менее одного метра. Одновременно производство работ в двух и более ярусах по одной вертикали без соответствующих защитных устройств недопустимо. Кладка каждого яруса стены выполняется с расчетом, чтобы уровень кладки после каждого перемещения был на один - два ряда выше рабочего настила. При кладке стен с внутренних подмастей надлежит по всему периметру здания устанавливать наружные защитные козырьки. Первый ряд козырьков устанавливают не выше 6 метров от уровня земли и не снимают до окончания кладки всей стены. Второй ряд козырьков устанавливают на 6-7 метров выше первого и переставляют через этаж, то есть через 6-7 метров. Ширина защитного козырька должна быть не менее 1,5 м. Плоскость козырька должна составлять с плоскостью стены угол 70 градусов. Хранить материалы и ходить на козырьках запрещается. Леса и подмостки необходимо делать прочными и устойчивыми. Настилы лесов и подмостей, а также стремянки ограждают прочными перилами высотой не менее 1 метра и бортовой доской высотой не менее 15 см. Настилы лесов и подмостей надо регулярно очищать от строительного мусора, а в зимнее время от снега и льда и посыпать песком. Металлические леса оборудуются грозозащитными устройствами, состоящими из молниеприемников, токопроводников и заземлителей.

            При устройстве кровли из рулонных материалов и варке мастики необходимо соблюдать особую осторожность во избежание ожогов горячим вяжущим раствором (битум, мастика). Котлы для варки мастик следует устанавливать на особо отведенных для этого и огражденных площадках, удаленных от ближайших сгораемых зданий не менее чем на 25 метров. Запас сырья и топлива должен находиться на расстоянии не менее 5 метров от котла. Все проходы и стремянки, по которым производится подноска мастик, а также рабочие места, оборудование, механизмы, инструмент и т.д. следует непосредственно перед работой осмотреть и очистить от остатков мастики, битума, бетона, мусора и грязи, а зимой от снега и наледи и посыпать дорожки песком. Рабочие, занятые подноской мастики, должны надевать плотные рукавицы, брезентовые костюмы и кожаную обувь. При гололеде, густом тумане, ветре свыше 6 баллов, ливневом дожде или сильном снегопаде ведение кровельных работ не разрешается.

            Работа по оштукатуриванию внутри помещения как непосредственно с пола, так и с инвентарных подмостей или передвижных станков. Подмости должны быть прочными и устойчивыми. Все рабочие, имеющие дело со штукатурными растворами, обеспечиваются спецодеждой и защитными приспособлениями (респираторами, очками и т.д.). Место растворонасосов и рабочее место оператора должны быть связаны исправно действующей сигнализацией. Растворонасосы, компрессоры и трубопроводы подвергаются испытанию на полуторократное рабочее давление. Исправность оборудования проверяют ежедневно до начала работ. Временная переносная электропроводка для внутренних штукатурных работ должна быть пониженного напряжения - не более 36 вольт.

            При производстве малярных и обойных работ необходимо выполнять следующие требования по охране труда.

            Окраска методом пневматического распыления, а также быстросохнущими лакокрасочными материалами, содержащими вредные летучие растворители, выполняется с применением респираторов и защитных очков. Необходимо следить, чтобы при работе с применением сиккативов, быстросохнущих лаков и масляных красок помещения хорошо проветривались. При применении нитрокрасок должно быть обеспечено сквозное проветривание. Пребывание рабочих в помещении, свежеокрашенном масляными и нитрокрасками, более 4-х часов недопустимо. Все аппараты и механизмы, работающие под давлением, должны быть испытаны и иметь исправные манометры и предохранительные клапаны.

            Улучшение организации производства, создание на строительной площадке условий труда, устраняющих производственный травматизм, профессиональные заболевания и обеспечивающих нормальные санитарно - бытовые условия - одна из важнейших задач, от успешного решения которой зависит дальнейшее повышение производительности труда на стройках.

            В обязанности администрации строительных организаций по охране труда входят:

·    

·    

·    

·    

·    

·    

·    

·    

·    

·    

            Обязанности ответственных лиц административно - технического персонала строек за состояние техники безопасности и производственной санитарии определены СНиП "Положения о функциональных обязанностях по вопросам охраны труда инженерно-технического персонала".

            Общее руководство работ по технике безопасности и производственной санитарии, а также ответственность за ее состояние возлагается на руководителей (начальников и главных инженеров) строительных организаций.

            Вводный (общий) инструктаж по безопасным методам работ проводится со всеми рабочими и служащими, поступающими в строительную организацию (независимо от профессии, должности, общего стажа и характера будущей работы).

            Цель вводного инструктажа - ознакомить новых работников с общими правилами техники безопасности, пожарной безопасности, производственной санитарии, оказания доврачебной помощи и поведения на территории стройки, с вопросами профилактики производственного травматизма, а также со специфическими особенностями работы на строительной площадке.

            Вводный инструктаж, как правило, проводится инженером по технике безопасности. программа вводного инструктажа разрабатывается с учетом местных условий и специфики работы на строительстве и утверждается главным инженером строительной организации.

            Инструктаж на рабочем месте проводят со всеми рабочими, принятыми в строительную организацию, а также переведенными с других участков или строительных управлений, перед допуском к самостоятельной работе по безопасным методам и приемам работ и пожарной безопасности непосредственно на рабочем месте.

            Первичный инструктаж проводится руководителем работ (мастером, производителем работ, начальником участка), в подчинение которому направлен рабочий.

            Цель инструктажа - ознакомить рабочего с производственной обстановкой и требованиями безопасности при выполнении полученной работы.

            Для строительных организаций может быть рекомендована приведенная схема оперативного контроля охраны труда и техники безопасности (см.схему ).

            В системе мероприятий по оздоровлению условий труда важное место занимает организация санитарно - бытового обслуживания работающих.

            В соответствии с "Гигиеническими требованиями к устройству и оборудованию санитарно - бытовых помещений для рабочих строительных и строительно-монтажных организаций" состав санитарно - бытовых помещений при количестве работающих в наиболее многочисленной смене от 15 человек и выше должен соответствовать данным, приведенным в таблице.

Наименование помещений

Назначение

Гардеробные

Для всех рабочих

Умывальные

Для всех рабочих

Душевые

Для всех рабочих

Туалеты

Для всех рабочих

Помещения для сушки спецодежды и обуви

Для всех рабочих

Помещения для личной гигиены женщин

При общем количестве женщин 100 и более

            Гардеробные служат для хранения уличной, домашней, рабочей одежды и обуви. Способы хранения одежды: открытый (на вешалках или в открытых шкафах), закрытый (в закрытых шкафах) и смешанный. Допускается в бытовых помещениях, рассчитанных на бригаду из 10-15 человек, хранение всех видов спецодежды в одном помещении, но в разных шкафах.

            Помещения для сушки спецодежды должны иметь площадь из расчета 0,2 м2 на каждого работающего, пользующегося сушкой в наиболее многочисленной смене, и располагается смежно с гардеробной. Они снабжаются отопительными установками.

            Туалеты следует размещать на расстоянии не более 100 м от наиболее удаленного рабочего места, а при размещении их вне здания - на расстоянии не более 200 м. Количество унитазов в туалетах устанавливается в зависимости от количества работающих в одной смене. Например, при количестве работающих до 25 человек в мужском и женском туалетах оборудуют на 1 очко, при 26-40 - на 2 очка, при 86-100 соответственно на 5 и 6 очков. Помещения туалетов оборудуются тамбурами с самозакрывающимися дверьми. Кабины отделяются перегородками высотой не менее 1,7 м. Перегородки не должны доходить до пола на 20 см. Кабины в осях должны быть размером 1,2 · 0,9 м.

            Питьевые установки размещают на расстоянии не более 75 м от рабочих мест. Раздача воды производится при помощи фонтанчиков. Душевые оборудуются в специально оборудованных вагонах из расчета одна душевая сетка на 5 человек при расчетном действии душевой 45 минут после каждой смены.

            Помещения для обогрева рабочих должны иметь площадь не менее 8м2.

7.3.1

            Контора: (5 м2 на чел.)

Nитр + Nсл = 15 чел · 5м2 = 75 м2

            Бытовые помещения:

· Душевые

Мужчинам  - 12 чел на одну душсетку, 60 чел / 12 = 5 душсеток,

                      60 чел · 0,43 = 25,8 м2

Женщинам - 12 чел на одну душсетку, 25 чел / 12 = 2 душсетки,

                      25 чел · 0,43 = 10,75 м2

· Умывальники

Мужчинам  - 15 чел на один кран, 60 чел / 15 = 4 крана,

                      60 чел · 0,05 = 3 м2

Женщинам - 15 чел на один кран, 25 чел / 15 = 2 крана

                      25 чел · 0,05 = 1,25 м2

· Туалеты

Мужчинам  - 15 чел на одно очко, 60 чел / 15 = 4 очка,

Женщинам - 15 чел на одно очко, 25 чел / 15 = 2 очка.

· Проходная - 5 м2

· Бытовые передвижки

Мужчинам  - 60 чел · 1 м2 = 60 м2

Женщинам - 25 чел · 1 м2 = 25 м2

· Помещения для сушки одежды

Мужчинам  - 60 чел · 0,2 м2 = 12 м2

Женщинам - 25 чел · 0,2 м2 = 5 м2

· Помещения для обогрева

Мужчинам  - 60 чел · 1 м2 = 60 м2

Женщинам - 25 чел · 1 м2 = 25 м2

· Гардеробная

Мужчинам  - 60 чел · 0,9 м2 = 54 м2

Женщинам - 25 чел · 0,9 м2 = 22,5 м2


7.4

1)      Шевцов К.К.

2)          Елшин И.М.


8.

8.1

            Гражданская оборона - часть оборонных мероприятий, проводимых в целях защиты населения и народного хозяйства от оружия массового поражения, а также для спасательных и неотложных аварийно - восстановительных работ в очагах поражения и в зонах катастрофического затопления.

            Основные задачи гражданской обороны:

1. 

2. 

3. 

8.2

            Данный жилой дом расположен в 11-м районе города Северск Томской области, главным фасадом выходящий на главный проспект города - проспект Коммунистический и ул. Солнечная. Климат региона резко континентальный, относится к 1-му климатическому району о минимальной зимней температурой -45°С. Площадка строительства попадает на территорию, застраиваемую ранее частными домами. Жилой дом относится к многоэтажным жилым домам секционного типа.

            Поскольку объект строительства находится в городе Северск, то возможны радиоактивные выбросы в атмосферу с атомных станций, расположенных на территории города. Нефтехимический комбинат тоже влияет на атмосферу города, жизнь и деятельность людей и их здоровье. Так как химические отходы выбрасываются в воздух, а затем с дождем и снегом выпадают на земную поверхность.

            Жилой дом относится к многоэтажным жилым домам секционного типа:

·    

·    

·    

·     400 кг.

·    

·    

·    

·    

·    

            Данный дом расположен на основном пути перемещения жителей самого большого в городе микрорайона, а также стоящего на основной автомагистрали города, поэтому для удобства жителей в данном доме запроектирована парикмахерская, Бюро путешествий и магазин. Этот дом дополняет ансамбль въезда в город своим зеркальным отображением существующего на другой стороне улицы дома.

            Для удобства передвижения людей предусмотрены проходы между секциями, которые также являются пожарными проездами. В проектируемом доме каждая квартира состоит из следующих помещений:

·     

·     

·     

·     

·     

·     

            В связи с находящимися в зоне города химическими и атомными объектами возникает опасность возникновения экстремальных ситуаций т.е. химических и атомных катастроф, которые могут произойти в результате стихийного бедствия, а также нарушения технологии производства.

            В случае чрезвычайного происшествия подготавливаются спецформирования для проведения спасательных работ. Для укрытия и эвакуации людей могут служить подвальные помещения данного жилого дома. Подвальное заглубление в земную поверхность достаточно большое. Убежище надо расположить в той части, которая имеет при прочих равных условиях наименьшее число наружных систем, выступающих выше поверхности земли, позволяет удобно расположить входы и запасные выходы, а также придает ограждающим конструкциям требуемые защитные качества.

            Отличительная особенность жилого дома - решение их ограждающих конструкций, защитные свойства которых достигаются с помощью усиления. Усиливаемые конструкции обеспечивают восприятие расчетной нагрузки от ударной волны без обрушения, ослабляют до допустимой величины гамма-излучение, возникающее в результате заражения окружающей местности и обеспечивают защиту от прогрева в случае возникновения пожара в наземной части здания.

            В качестве воздухообмена используются вентиляционные каналы. Для использования подвального помещения необходимо заделать трещины и отверстия, подогнать двери и обить их плотным материалом. Существующие в подвалах сети коммуникаций холодной и горячей воды (отопления) также используют в санитарно - гигиенических целях в случае долгого нахождения в убежище. Радиационная обстановка на территории объекта складывается в результате радиационного заражения местности и всех расположенных на ней предметов и требует принятие определенных мер защиты.


8.3

            Коэффициент защиты для полностью заглубленных подвалов и помещений, расположенных во внутренней части не полностью заглубленных подвалов и цокольных этажей при суммарном давлении выступающих частей наружных систем с отсыпкой в 1000 кгс/м2 и более, определяется по формуле:

        4,5 · Кn

КЗ = ¾¾¾¾, где:

        Vi + X · Кn

КЗ - коэффициент защиты,

Кn - кратность ослабления перекрытиями подвала (цокольного этажа) вторичного излучения, рассеянного в помещении первого этажа,

определяется в зависимости от веса 1 м3 по табл. 28 [СНиП -II-11-77], равна 15,

Vi - коэффициент, зависящий от высоты и ширины помещения и принимаемый по табл. 29 [СНиП -II-11-77] равным 0,23,

X - Часть суммарной дозы радиации, проникающей в помещение через входы определяется по формуле:

X = КВХ · П90, где:

КВХ - коэффициент, характеризующий конструктивные особенности входа и его защитные свойства, равен 0,015,

П90 - коэффициент, характеризующий конструктивные особенности входа и его защитные свойства, равен 1.

Х = 1 · 0,15 = 0,15

        4,5 · 15

Кз = ¾¾¾¾¾¾¾ = 27,21

       0,23 + 0,15 · 15

 На рисунке цифрами обозначены:

1. 

2. 

3. 

4. 

5. 

            В целях более рационального использования площади места для размещения укрываемых людей располагают обычно в два яруса. Места для сидения в первом ярусе имеют размеры 0,45 х 0,45 м, Место для лежания 0,55 х 1,8 м. Площадь на одного укрываемого будет составлять 0,4 - 0,5 м2.

            Для расчета примем семью из 4-х человек, тогда общее количество людей будет равно 144 чел. Рассчитаем нужное количество мест. 72 места для сидения и 72 - для лежания.


8.4

1.      Атамашок В.Т. Шрицев Л.Т.

2. 

3. 


9.

            The designed residental house with built - in premises is located in the town of Seversk of Tomsk area. The built - in premises enter are the following:

1. 

2. 

3. 

            The residetnal house is protected in brick with a red front brick revtement, mineral - wadded warming and prefabricated ferro - concrete plates overlapping. The windows and doors are wooden. Floors are covered with linoleum. Ceramzit tighten has tighten has thickness of 10 mm. The apartments are equipped by a water drain, cold and hot water - supply, radio, TV and electricity. The apartments are completed with other utilities and electric furnases.

            In the residental house a lift and refuse are projected. Ventilation is natural. It caries out with the aid of ventilation channels located in walls. In built - in premises special equipment is instaled. The bases are made on basis of piles (section 0.3 x 0.3 m, length 10 m, 7 m, 5 m). Monolitic reinforced rostwerk, on which up to a mark +- 0.000 m are mounted base blocks. Around the house concrete roads, ways, parking place covered with asphalt are made. The children's places are equipped with small architecture forms. Trees, bushes and grass are grown on the lawns.


10.

 TOC o "1-4" ............................................................ GOTOBUTTON _Toc360479416   PAGEREF _Toc360479416 1

1.1 Общая часть.................................................................................................................. GOTOBUTTON _Toc360479419   PAGEREF _Toc360479419 1

1.1.1 Исходные данные.................................................................................................... GOTOBUTTON _Toc360479420   PAGEREF _Toc360479420 2

1.2 Объемно - планировочное решение........................................................................... GOTOBUTTON _Toc360479421   PAGEREF _Toc360479421 3

1.2.1 Общее положение.................................................................................................... GOTOBUTTON _Toc360479422   PAGEREF _Toc360479422 3

1.3 Архитектурно - конструктивное решение................................................................ GOTOBUTTON _Toc360479423   PAGEREF _Toc360479423 5

1.3.1 Фундаменты............................................................................................................. GOTOBUTTON _Toc360479424   PAGEREF _Toc360479424 6

1.3.2 Наружные стены...................................................................................................... GOTOBUTTON _Toc360479425   PAGEREF _Toc360479425 6

1.3.3 Перекрытия и покрытия.......................................................................................... GOTOBUTTON _Toc360479426   PAGEREF _Toc360479426 9

1.3.4 Перегородки........................................................................................................... GOTOBUTTON _Toc360479427   PAGEREF _Toc360479427 12

1.3.5 Окна и витражи - витрины.................................................................................... GOTOBUTTON _Toc360479428   PAGEREF _Toc360479428 12

1.3.6 Двери....................................................................................................................... GOTOBUTTON _Toc360479429   PAGEREF _Toc360479429 12

1.3.7 Полы........................................................................................................................ GOTOBUTTON _Toc360479430   PAGEREF _Toc360479430 13

1.3.8 Отделка................................................................................................................... GOTOBUTTON _Toc360479431   PAGEREF _Toc360479431 13

1.3.9 Отопление............................................................................................................... GOTOBUTTON _Toc360479432   PAGEREF _Toc360479432 13

1.3.10 Водоснабжение.................................................................................................... GOTOBUTTON _Toc360479433   PAGEREF _Toc360479433 14

1.3.11 Канализация........................................................................................................ GOTOBUTTON _Toc360479434   PAGEREF _Toc360479434 14

1.3.12 Энергоснабжение................................................................................................ GOTOBUTTON _Toc360479435   PAGEREF _Toc360479435 14

1.3.13 Радио..................................................................................................................... GOTOBUTTON _Toc360479436   PAGEREF _Toc360479436 14

1.3.14 Телевидение.......................................................................................................... GOTOBUTTON _Toc360479437   PAGEREF _Toc360479437 14

1.3.15 Телефонизация.................................................................................................... GOTOBUTTON _Toc360479438   PAGEREF _Toc360479438 15

1.3.16 Мусоропровод..................................................................................................... GOTOBUTTON _Toc360479439   PAGEREF _Toc360479439 15

1.4 Технико - экономические показатели................................................................... GOTOBUTTON _Toc360479440   PAGEREF _Toc360479440 16

1.4.1 Технико - экономические показатели............................................................... GOTOBUTTON _Toc360479441   PAGEREF _Toc360479441 17

1.5 Генеральный план...................................................................................................... GOTOBUTTON _Toc360479442   PAGEREF _Toc360479442 19

1.6 Список использованной литературы..................................................................... GOTOBUTTON _Toc360479443   PAGEREF _Toc360479443 20

2. Основания и фундаменты.................................................................................. GOTOBUTTON _Toc360479444   PAGEREF _Toc360479444 21

2.1 Введение........................................................................................................................ GOTOBUTTON _Toc360479445   PAGEREF _Toc360479445 21

2.2 Краткая характеристика проектируемого здания............................................... GOTOBUTTON _Toc360479446   PAGEREF _Toc360479446 22

2.3 Инженерно- геологические условия строительной площадки........................ GOTOBUTTON _Toc360479447   PAGEREF _Toc360479447 22

2.4 Сбор нагрузок на фундамент крайней стены........................................................ GOTOBUTTON _Toc360479449   PAGEREF _Toc360479449 25

2.4.1 Постоянные нормативные нагрузки:................................................................. GOTOBUTTON _Toc360479450   PAGEREF _Toc360479450 25

2.4.2 Временные нормативные нагрузки:.................................................................... GOTOBUTTON _Toc360479451   PAGEREF _Toc360479451 25

2.4.3 Постоянные нагрузки от конструкции:............................................................. GOTOBUTTON _Toc360479452   PAGEREF _Toc360479452 26

2.4.4 Временные нагрузки............................................................................................. GOTOBUTTON _Toc360479453   PAGEREF _Toc360479453 27

2.4.5 Определение количества свай в свайном фундаменте.................................... GOTOBUTTON _Toc360479454   PAGEREF _Toc360479454 29

2.4.6 Расчет осадки свайного фундамента................................................................ GOTOBUTTON _Toc360479455   PAGEREF _Toc360479455 31

2.4.7 Подбор молота для погружения свай................................................................. GOTOBUTTON _Toc360479456   PAGEREF _Toc360479456 35

2.4.8 Определение проектного отказа свай................................................................ GOTOBUTTON _Toc360479457   PAGEREF _Toc360479457 37

2.5 Сбор нагрузок на фундамент средней стены......................................................... GOTOBUTTON _Toc360479458   PAGEREF _Toc360479458 38

2.5.1 Определение нагрузок на внутреннюю стену.................................................... GOTOBUTTON _Toc360479459   PAGEREF _Toc360479459 38

2.5.2 Постоянные нагрузки от конструкции.............................................................. GOTOBUTTON _Toc360479460   PAGEREF _Toc360479460 38

2.5.3 Временные нагрузки от конструкций:................................................................ GOTOBUTTON _Toc360479461   PAGEREF _Toc360479461 38

2.5.4 Постоянные нагрузки от конструкции:............................................................. GOTOBUTTON _Toc360479462   PAGEREF _Toc360479462 39

2.5.5 Временные нагрузки............................................................................................. GOTOBUTTON _Toc360479463   PAGEREF _Toc360479463 39

2.5.6 Определение количества свай в свайном фундаменте.................................... GOTOBUTTON _Toc360479464   PAGEREF _Toc360479464 41

2.5.7 Расчет осадки свайного фундамента................................................................ GOTOBUTTON _Toc360479465   PAGEREF _Toc360479465 43

2.5.8 Подбор молота для погружения свай................................................................. GOTOBUTTON _Toc360479466   PAGEREF _Toc360479466 47

2.5.9 Определение проектного отказа свай................................................................ GOTOBUTTON _Toc360479467   PAGEREF _Toc360479467 48

2.6 Список использованной литературы..................................................................... GOTOBUTTON _Toc360479468   PAGEREF _Toc360479468 50

3. Технология строительного производства.............................................. GOTOBUTTON _Toc360479469   PAGEREF _Toc360479469 51

3.1 Введение........................................................................................................................ GOTOBUTTON _Toc360479470   PAGEREF _Toc360479470 51

3.2 Исходные данные....................................................................................................... GOTOBUTTON _Toc360479471   PAGEREF _Toc360479471 51

3.3 Земляные работы........................................................................................................ GOTOBUTTON _Toc360479472   PAGEREF _Toc360479472 52

3.3.1 Выбор метода разработки грунта “недобора”.................................................... GOTOBUTTON _Toc360479473   PAGEREF _Toc360479473 54

3.3.2 Калькуляция затрат труда и заработной платы на земельные работы.......... GOTOBUTTON _Toc360479474   PAGEREF _Toc360479474 55

3.4 Технология забивки свай.......................................................................................... GOTOBUTTON _Toc360479475   PAGEREF _Toc360479475 55

3.4.1 Область применения............................................................................................. GOTOBUTTON _Toc360479476   PAGEREF _Toc360479476 56

3.4.2 Организация и технология строительного процесса...................................... GOTOBUTTON _Toc360479477   PAGEREF _Toc360479477 57

3.4.3 Калькуляция трудовых затрат на свайные работы.......................................... GOTOBUTTON _Toc360479479   PAGEREF _Toc360479479 62

3.5 Технология возведения монолитных железобетонных  фундаментов........... GOTOBUTTON _Toc360479480   PAGEREF _Toc360479480 63

3.5.1 Общие сведения..................................................................................................... GOTOBUTTON _Toc360479481   PAGEREF _Toc360479481 63

3.5.2 Техника безопасности.......................................................................................... GOTOBUTTON _Toc360479482   PAGEREF _Toc360479482 64

3.5.3 Армирование фундаментов................................................................................. GOTOBUTTON _Toc360479483   PAGEREF _Toc360479483 65

3.6 Бетонирование............................................................................................................. GOTOBUTTON _Toc360479484   PAGEREF _Toc360479484 66

3.6.1 Оборудование полачи и распределения бетонной смеси................................ GOTOBUTTON _Toc360479485   PAGEREF _Toc360479485 66

3.6.2 Калькуляция трудовых затрат на бетонные работы......................................... GOTOBUTTON _Toc360479487   PAGEREF _Toc360479487 67

3.6.3 Укладка бетонной смеси...................................................................................... GOTOBUTTON _Toc360479488   PAGEREF _Toc360479488 68

3.6.3.1 Область применения........................................................................................ GOTOBUTTON _Toc360479489   PAGEREF _Toc360479489 68

3.6.3.2 Организация и технология строительного производства.............................. GOTOBUTTON _Toc360479490   PAGEREF _Toc360479490 68

3.6.3.3 Контроль качества и приемка работ............................................................... GOTOBUTTON _Toc360479491   PAGEREF _Toc360479491 69

3.6.3.4 Уплотнение бетонной смеси........................................................................... GOTOBUTTON _Toc360479492   PAGEREF _Toc360479492 69

3.6.3.5 Количество транспортных средств для доставки бетонной смеси на объект GOTOBUTTON _Toc360479493   PAGEREF _Toc360479493 71

3.7 Технико - экономические показатели................................................................... GOTOBUTTON _Toc360479494   PAGEREF _Toc360479494 72

3.8 Список использованной литературы..................................................................... GOTOBUTTON _Toc360479495   PAGEREF _Toc360479495 74

4. Расчётно - конструктивный раздел.............................................................. GOTOBUTTON _Toc360479496   PAGEREF _Toc360479496 75

4.1 Расчёт железобетонных ленточных ростверков свайных   фундаментов для наружных стен.............................................................................................................................................. GOTOBUTTON _Toc360479497   PAGEREF _Toc360479497 75

4.1.1 Расчёт поперечных стержней............................................................................... GOTOBUTTON _Toc360479498   PAGEREF _Toc360479498 78

4.1.2 Расчёт на продавливание..................................................................................... GOTOBUTTON _Toc360479499   PAGEREF _Toc360479499 78

4.2 Расчёт железобетонных ленточных ростверков свайных   фундаментов для внутренних стен.............................................................................................................................................. GOTOBUTTON _Toc360479500   PAGEREF _Toc360479500 80

4.2.1 Расчёт поперечных стержней............................................................................... GOTOBUTTON _Toc360479501   PAGEREF _Toc360479501 83

4.2.2 Расчёт на продавливание..................................................................................... GOTOBUTTON _Toc360479502   PAGEREF _Toc360479502 83

4.3 Список использованной литературы..................................................................... GOTOBUTTON _Toc360479503   PAGEREF _Toc360479503 85

5. Организация строительства............................................................................. GOTOBUTTON _Toc360479504   PAGEREF _Toc360479504 86

5.1 Обоснование срока строительства........................................................................ GOTOBUTTON _Toc360479505   PAGEREF _Toc360479505 86

5.2 Составление ведомости объёмов и трудоёмкости работ................................... GOTOBUTTON _Toc360479506   PAGEREF _Toc360479506 89

5.3 Расчёт и построение сетевого графика................................................................. GOTOBUTTON _Toc360479507   PAGEREF _Toc360479507 96

5.4 Разработка генерального плана.............................................................................. GOTOBUTTON _Toc360479508   PAGEREF _Toc360479508 98

5.4.1 Проектирование расположения подъемно - транспортного оборудования и  подкрановых путей.......................................................................................................................................... GOTOBUTTON _Toc360479509   PAGEREF _Toc360479509 98

5.4.2 Расчет опасных зон действия кранов................................................................ GOTOBUTTON _Toc360479510   PAGEREF _Toc360479510 99

5.4.3 Расчёт площадей временных подкрановых складов..................................... GOTOBUTTON _Toc360479511   PAGEREF _Toc360479511 100

5.4.4 Расчёт временного водоснабжения.................................................................. GOTOBUTTON _Toc360479512   PAGEREF _Toc360479512 101

5.4.4.1 Расчёт диаметров водопроводных труб....................................................... GOTOBUTTON _Toc360479513   PAGEREF _Toc360479513 102

5.4.5 Временное электроснабжение........................................................................... GOTOBUTTON _Toc360479514   PAGEREF _Toc360479514 102

5.4.6 Проектирование административно - бытовых зданий.................................. GOTOBUTTON _Toc360479515   PAGEREF _Toc360479515 103

5.5 Список использованной литературы................................................................... GOTOBUTTON _Toc360479516   PAGEREF _Toc360479516 106

6. Экономика.................................................................................................................. GOTOBUTTON _Toc360479517   PAGEREF _Toc360479517 107

7. Экология и охрана природы............................................................................ GOTOBUTTON _Toc360479518   PAGEREF _Toc360479518 111

7.1 Введение...................................................................................................................... GOTOBUTTON _Toc360479519   PAGEREF _Toc360479519 111

7.2 Природоохранные мероприятия при строительстве зданий и сооружений... GOTOBUTTON _Toc360479520   PAGEREF _Toc360479520 112

7.2.1 Общие положения................................................................................................ GOTOBUTTON _Toc360479521   PAGEREF _Toc360479521 112

7.3 Охрана труда в строительстве............................................................................... GOTOBUTTON _Toc360479522   PAGEREF _Toc360479522 116

7.3.1 Расчёт административно - бытовых помещений............................................ GOTOBUTTON _Toc360479523   PAGEREF _Toc360479523 123

7.4 Список использованной литературы................................................................... GOTOBUTTON _Toc360479524   PAGEREF _Toc360479524 125

8. Гражданская оборона......................................................................................... GOTOBUTTON _Toc360479525   PAGEREF _Toc360479525 126

8.1 Введение...................................................................................................................... GOTOBUTTON _Toc360479526   PAGEREF _Toc360479526 126

8.2 Использование подвального помещения под радиационные укрытия........ GOTOBUTTON _Toc360479527   PAGEREF _Toc360479527 126

8.3 Расчет противорадиационной защиты................................................................. GOTOBUTTON _Toc360479528   PAGEREF _Toc360479528 129

8.4 Использованная литература:................................................................................. GOTOBUTTON _Toc360479529   PAGEREF _Toc360479529 131

9. Summary........................................................................................................................ GOTOBUTTON _Toc360479530   PAGEREF _Toc360479530 132

10. Оглавление............................................................................................................... GOTOBUTTON _Toc360479531   PAGEREF _Toc360479531 133

1. 1.1             Основным назначением архитектуры всегда являлось создание необходимой для существования человека жизненной среды, характер и комфортабельность которой определялись уровнем развития общества, его  культурой, достижениями науки

 

 

 

Внимание! Представленный Диплом находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Диплом по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru