курсовые,контрольные,дипломы,рефераты
Муниципальная общеобразовательная средняя школа № 19
Чарующие тайны жидкости
Работу выполнила ученица 10 «Б» класса
Ярощук Олеся
г. Нижневартовск 2009
Введение
жидкость вязкость поток давление
Тысячи лет люди наблюдают вечно изменчивое течение воды и пытаются разгадать её тайну. Первоклассные физики и математики ломали и продолжают ломать головы, стараясь понять природу и прихотливое поведение потока воды. Но вступив в XXI век, мы с сожалением должны констатировать, что с конца XIX столетия — времени наивысшего расцвета науки о движении сплошных сред (гидродинамики в случае жидкости и аэродинамики в случае газа) — мы очень мало продвинулись в понимании природы этого вечно меняющегося течения. Все основные законы течения жидкости (для краткости везде будет говориться о жидкости, хотя, за некоторым исключением, те же закономерности присущи и газу) были открыты до первой половины XIX столетия. Перечислим их.
Постоянство потока массы жидкости
Его ещё называют законом неразрывности, законом непрерывности, уравнением сплошности жидкости или законом сохранения вещества в гидродинамике. По существу, этот закон был открыт Б. Кастелли в 1628 году. Он установил, что скорость течения жидкости в трубах обратно пропорциональна площади их поперечного сечения. Другими словами, чем уже сечение канала, тем с большей скоростью движется в нём жидкость.
Вязкость жидкости И. Ньютон (конец XVII века) экспериментально установил, что любой жидкости свойственна вязкость, то есть внутреннее трение. Вязкость приводит к возникновению сил трения между движущимися с различными скоростями слоями жидкости, а также между жидкостью и омываемым ею телом. Им же было установлено, что сила трения пропорциональна коэффициенту вязкости жидкости и градиенту (перепаду) скорости потока в направлении, перпендикулярном его движению. Жидкости, подчиняющиеся этому закону, называют ньютоновскими в отличие от неньютоновских жидкостей, у которых зависимость между силой вязкого трения и скоростью жидкости имеет более сложный характер.
В силу вязкого трения скорость жидкости на поверхности омываемого ею тела всегда равна нулю. Это совсем не очевидно, но тем не менее подтверждается во множестве экспериментов.
Изменение давления жидкости в зависимости от скорости её движения Д. Бернулли в своей книге „Гидродинамика“ (1738) получил для идеальной жидкости, не обладающей вязкостью, математическую формулировку закона сохранения энергии в жидкости, который носит теперь название уравнения Бернулли. Оно связывает давление в потоке жидкости с её скоростью и утверждает, что давление жидкости при её движении меньше там, где сечение потока S меньше, а скорость жидкости соответственно больше. Вдоль трубки тока, которую можно мысленно выделить в спокойном безвихревом потоке, сумма статического давления, динамического сV2/2, вызванного движением жидкости плотностью с, и давления сgh столба жидкости высотой h остаётся постоянной:
Сопротивление, испытываемое телом при движении в жидкости. Существование сопротивления среды было обнаружено ещё Леонардо да Винчи в XV столетии. Мысль, что сопротивление жидкости движению тела пропорционально скорости тела, впервые высказал английский учёный Дж. Уиллис. Ньютон во втором издании своей знаменитой книги „Математические начала натуральной философии“ установил, что сопротивление состоит из двух членов, одного — пропорционального квадрату скорости и другого — пропорционального скорости. Там же Ньютон сформулировал теорему о пропорциональности сопротивления максимальной площади сечения тела, перпендикулярного направлению потока. Силу сопротивления тела, медленно движущегося в вязкой жидкости, рассчитал в 1851 году Дж. Стокс. Она оказалась пропорциональной коэффициенту вязкости жидкости, первой степени скорости тела и его линейным размерам.
Необходимо отметить, что сопротивление жидкости движущемуся в нём телу в значительной мере обусловливается именно наличием вязкости. В идеальной жидкости, в которой вязкость отсутствует, сопротивление вообще не возникает.
Опыт. Чтобы продемонстрировать различный характер обтекания, а следовательно, и сопротивления тел различной формы, возьмём шар, например мяч для пинг-понга или тенниса, приклеим к нему бумажный конус и поставим за ним горящую свечу.
Повернём тело шариком к себе и подуем на него. Пламя отклонится от тела. Теперь повернём тело к себе острым концом и снова подуем. Пламя отклоняется к телу. Этот опыт показывает, что форма задней поверхности тела определяет направление перепада давления позади неё, а следовательно, и сопротивление тела в потоке воздуха.
В первом опыте пламя отклоняется от тела; это означает, что перепад давления направлен по потоку. Струя воздуха плавно обтекает тело, смыкается за ним и далее движется обычной струёй, которая отклоняет пламя свечи назад и может даже задуть его. Во втором опыте пламя отклоняется к телу — как и в эксперименте с коробком, позади тела создаётся разрежение, перепад давления направлен против потока. Следовательно, в первом опыте сопротивление тела меньше, чем во втором.
Падение давления в вязкой жидкости при её движении в трубе постоянного сечения
Опыт показывает, что давление в жидкости, текущей по трубе постоянного сечения, падает вдоль трубы по течению: чем дальше от начала трубы, тем оно ниже. Чем уже труба, тем сильнее падает давление. Это объясняется наличием вязкой силы трения между потоком жидкости и стенками трубы.
Эффект Магнуса. Речь идёт о возникновении силы, перпендикулярной потоку жидкости при обтекании ею вращающегося тела. Этот эффект был обнаружен и объяснён Г.Г. Магнусом (около середины XIX столетия) при изучении полёта вращающихся артиллерийских снарядов и их отклонения от цели. Эффект Магнуса состоит в следующем. При вращении летящего тела близлежащие слои жидкости (воздуха) увлекаются им и также получают вращение вокруг тела, то есть начинают циркулировать вокруг него. Встречный поток рассекается телом на две части. Одна часть направлена в ту же сторону, что и циркулирующий вокруг тела поток; при этом происходит сложение скоростей набегающего и циркулирующего потоков, значит, давление в этой части потока уменьшается. Другая часть потока направлена в сторону, противоположную циркуляции, и здесь результирующая скорость потока падает, что приводит к увеличению давления. Разность давлений с обеих сторон вращающегося тела и создаёт силу, которая перпендикулярна к направлению встречного, набегающего потока жидкости
Опыт .Склеим из листа плотной бумаги цилиндр. Из доски, положенной одним краем на стопку книг, сделаем на столе наклонную плоскость и положим на неё цилиндр. Скатившись, он вроде бы должен дальше двигаться по параболе и упасть дальше от края. Однако вопреки ожидаемому траектория его движения загибается в другую сторону, и цилиндр залетает под стол. Всё дело в том, что он не просто падает, а ещё и вращается, создавая вокруг себя циркуляцию воздуха. Возникает избыточное давление, направленное в сторону, противоположную поступательному движению цилиндра.
Эффект Магнуса позволяет игрокам в пинг-понг и теннис отбивать „кручёные“ мячи, а футболистам — посылать „сухой лист“, ударяя мяч по краю.
Муниципальная общеобразовательная средняя школа № 19 Чарующие тайны жидкости Работу выполнила ученица 10 «Б» класса Ярощук Олеся г. Ни
Электропривод микроволновой печи
Підстанції. Трансформатори та автотрансформатори
Ядерная энергетика и особые подходы к работоспособности конструкционных материалов
Ионная имплантация
Неоценимый вклад ученых-физиков СССР в Великую Победу
Однофазный асинхронный двигатель
Оптическое стекло
Физик-ядерщик. Укротитель ядра
Обзор современного состояния энергоресурсов человечества
Световод: уравнение, типы волн в световодах. Критические длины и частоты
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.