курсовые,контрольные,дипломы,рефераты
Асп. Саханский Ю. В.
Кафедра теоретической электротехники и электрических машин.
Северо-Кавказский горно-металлургический институт (государственный технологический университет)
Раскрыт системный подход к изучению электровзрывных комплексов. Определены условия и границы нормального функционирования системы.
Исследование электровзрывных работ, их совершенствование и повышение безопасности можно провести наиболее полно и эффективно, рассматривая электровзрывной комплекс как систему. Системный подход позволит наиболее полно исследовать как внутренние связи и функционально-структурные особенности электровзрывного комплекса, так условия и особенности его взаимодействия с внешней средой, наметить пути оптимизации этих взаимодействий.
Рассматривая электровзрывной комплекс как систему, необходимо, прежде всего, определить границы системы и её составляющие части. В электровзрывной комплекс входят: электровзрывная цепь, устройство взрывания (прибор взрывания), приборы контроля. Структурная схема электровзрывного комплекса изображена на рисунке.
Структурная схема системы взрывания.
Электровзрывная цепь состоит из электродетонаторов (ЭД), распределительной сети и магистральных проводов. Основным компонентом системы, влияющим на параметры остальных её составляющих, является ЭД. От типа ЭД, их числа и схемы соединения зависит требуемая мощность устройства взрывания, параметры контрольно-измерительной аппаратуры и ряд других важных характеристик электровзрывного комплекса. Параметры ЭД, в свою очередь, определяются технологией электрического взрывания, надёжностью и безопасностью системы. Срабатывание ЭД должно вызвать взрыв взрывчатого вещества во взрывной полости.
Устройство взрывания должно воздействовать на ЭД электрическим импульсом, и оно может быть реализовано в виде автономного источника питания или в виде промежуточного звена между силовой и электрической цепями.
Назначение приборов контроля – установить готовность электровзрывной цепи и устройства взрывания к инициированию, а также осуществить контроль срабатывания ЭД, оценить степень опасности блуждающих токов на электровзрывную цепь.
В общем случае математическая модель системы может быть представлена в виде соответствия двух функций, одна из которых относится к воздействию на систему, а другая характеризует реакцию системы на это воздействие – .
, (1)
где – факторы, определяющие воздействие,
– факторы, определяющие реакцию системы.
Воздействующими факторами, например, в случае применения наиболее распространённых конденсаторных взрывных приборов будут: выходное напряжение U, емкость конденсатора – накопителя C, величина шунтирующего резистора RШ, наличие и величина дополнительной индуктивности L и др. Факторами, определяющими реакцию системы, будут число N и параметры ЭД – сопротивление электродетонатора R,импульс воспламенения K,время передачи θ, параметры магистральных проводов, топология электровзрывной цепи и т.д. Кроме того, необходимо учитывать и стороннее влияние на систему (блуждающие токи) и степень её электромагнитной совместимости.
Заданное в формуле (1) соответствие определяется функциональными требованиями к системе: результат воздействия прибора взрывания должен привести к срабатыванию всех ЭД в цепи, что возможно только при выполнении конкретных условий, называемых условиями безотказности. Условия безотказности устанавливают необходимое соответствие между параметрами источников энергии (воздействия) и нагрузкой (электровзрывной цепью) с учётом возможных отклонений этих параметров.
Таким образом, нормальное функционирование системы возможно при обязательном выполнении двух условий:
система должна безотказно сработать при действии внутренних источников энергии;
система должна быть гарантированно устойчивой от воздействия внешних источников энергии.
Для выполнения первого условия должны быть соблюдены следующие соотношения:
при , (2)
где – энергия, получаемая ЭД от прибора взрывания;
– максимальная энергия, необходимая ЭД для срабатывания;
IЭД – ток через электродетонатор;
iН – величина нормированного тока, т.е. тока, протекание которого через ЭД приводит к выделению тепла, необходимого для инициирования.
Для выполнения второго условия должны быть соблюдены соотношения:
(3)
или
, (4)
где – энергия сторонних воздействий на электровзрывную цепь;
– минимальная энергия, необходимая для срабатывания ЭД;
– величина тока, вызванная сторонним влиянием на электровзрывную цепь.
Соотношения (2), (3), (4) лежат в основе анализа условий безотказности при электровзрывании и моделировании электровзрывных систем. Далее в работе обоснованы и исследованы математические модели конкретных электровзрывных комплексов, представленные соответствующими функциональными звеньями, отражающими условия безотказности и электромагнитную совместимость системы.
Электровзрывной комплекс обладает рядом специфических свойств, тесно связанных с предъявляемыми ему требованиями. Технические требования на систему электровзрывания должны включать в себя:
1. Общие технические требования, характеризующие систему электровзрывания как единый комплекс, определяющие как внутренние, так и внешние взаимодействия данного комплекса, его свойства как целостной структуры.
2. Технические требования на основные компоненты системы – магистральные провода, ЭД, устройства взрывания, приборы контроля.
Система должна удовлетворять требованиям технологии взрывных работ – ЭД должны иметь необходимое число ступеней замедления, число ЭД в электровзрывной цепи должно позволить одновременно инициировать требуемое число зарядов.
Одним из специфических свойств электровзрывного комплекса является то, что его основной компонент – электровзрывная цепь существует очень кратковременно, разрушаясь при воздействии электрического импульса достаточной мощности. Это воздействие связано со срабатыванием ЭД и инициированием взрывчатого вещества.
Воздействие электрического импульса устройства взрывания на электровзрывную цепь должно привести к надёжному срабатыванию всех ЭД, включённых в цепь. Однако в ряде случаев этого не происходит, т.е. возникают отказы. Причинами отказов могут быть, прежде всего, несоответствие параметров прибора взрывания параметрам электровзрывной цепи, т.е. не выполняются условия безотказности. Существуют и другие причины отказов – дефектные ЭД, повреждения магистральных проводов и т.п. Главное условие безотказного срабатывания ЭД – это соответствие между параметрами источника тока (взрывного прибора) и параметрами электровзрывной цепи и ЭД.
Электровзрывной комплекс должен позволять проводить надёжный контроль как готовности электровзрывной цепи к инициированию, так и контроль срабатывания ЭД. Это требование в современных электровзрывных комплексах выполняется лишь частично, с невысокой надёжностью результатов измерения. Далее автором намечены пути совершенствования информационно-измерительной аппаратуры электровзрывного комплекса.
Система электровзрывания должна быть достаточно универсальной, обладающей широким диапазоном производительности, возможностью сочетания основных компонентов различного типа, широким спектром условий применения.
Параметры существующих устройств взрывания, функциональные возможности и технические характеристики приборов контроля обычно позволяют создавать более или менее оптимальные электровзрывные комплексы, обладающие требуемым уровнем надёжности.
Моделирование в электровзрывании позволяет наиболее полно исследовать электровзрывной комплекс как систему.
Вопросы моделирования приобретают особую значимость, в частности, из-за трудностей экспериментального исследования электровзрывных цепей и ЭД.
Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками
Наноструктурированные материалы и функциональные устройства на их основе
Геометрические свойства регулярного круглого конуса в пространстве
Анализ методов исследования наноматериалов
Эффективный алгоритм обращения матрицы Вандермонда
Принципы построения систем сбора и передачи информации для объектов электроэнгергетики
Метод АВИ в математической теории переноса вредных веществ в гетерогенных средах
Галактики: основные сведения
Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
Имитационная модель системы автоматизированного проектирования абстрактного этапа реализации устройств управления
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.