,,,
.
, 1, - , , , , (Machmoud, 1977; Jamshidi, 1983). , , , , , , , , . , . - , , , , . 4.1 () . , (supremal coordinator), , , -, .. , , , .. . , , , , (March and Simon, 1958). Mesarovic . (1970) () . (Schoeffler and Lasdon, 1966; Benveniste et al., 1976; Smith and Sage, 1973; Geoffrion, 1970; Schoeffler, 1971; Pearson, 1971; Cohen and Jolland, 1976; Sandell et al., 1978; Singh,1980; Jamshidi, 1983; Huang and Shao, 1994a,b). Mahmoud (1977).
, . 4.6.
, :
1. , .
2. , .
3. ( ).
4. , , .
( ) , , , , .
1. . . , .
2. . . , 4.2 (Singh and Titli, 1978). , , ( ) , ( ), ( ) ( ).
3. . ; , , ( ) , . , 4.1, . , . 4.2 , , .
, . , , . Jamshidi (1983).
, , , . 4.3. , : () , () , ( ).
4.2 . 4.3 . 4.4, interaction prediction . 4.5 , . . . 6. 4.6 .
4.2. .
, , , , . . , , , : (feasible) (dual-feasible). , , ( ).
4.2.1 .
:
(4.2.1)
(4.2.2)
x , u , y . :
(4.2.3)
(4.2.4)
xi, ui, yi i- , . () . , yi, i=1,2 . y1 y2 wi, i=1,2:
(4.2.5)
:
i:
(4.2.6)
(4.2.7)
:
(4.2.8)
:
(4.2.9)
(4.2.10)
wi, yi, . , , . , x, u y, . , , . , .
.
(4.2.1)-(4.2.2). . i- yi, zi. , .. . , zi x, u y. , , , , . , , , .. yi zi (Mesarovic ., 1969; Schoeffler, 1971).
, . , . , , , . :
(4.2.11)
( ), y-z. z, :
(4.2.12)
(4.2.13)
:
(4.2.14)
S0:
(4.2.15)
(4.2.11)-(4.2.13) , :
1:
(4.2.16)
(4.2.17)
2:
(4.2.18)
(4.2.19)
, :
(4.2.20)
, , , .. (4.2.16) (4.2.18) , . 4.4 . 4.4 4.5.
, , , .
4.3 .
. , .
:
(4.3.1)
u (n x l) (m x l). , N si, i=1,,N, i- :
, (4.3.2)
x, u, xi, ui n, m, ni, mi, , gi i- , :
(4.3.3)
(4.3.4)
u1,,uN, ,
(4.3.5)
(4.3.1) :
(4.3.6)
(4.3.1) N (4.3.2), (4.3.6) gi(x,t) (4.3.2), :
(4.3.7)
(4.3.8)
(4.3.9)
zi ( ) N . , :
(4.3.10)
(4.3.11)
(4.3.12)
(4.3.13)
, , . .
4.3.1
:
(4.3.14)
:
(4.3.15)
(k x l), :
(4.3.16)
N-1 , Gij ni x nj. N , (4.3.15)-(4.3.16) :
(4.3.17)
Qi ni x ni, Ri Vi mi x mi ki x ki ,
(4.3.18)
(4.3.17) . , , , . Mesarvic . (1970), linear-quadratic Pearson (1971) Singh (1980) Jamshidi (1983).
N zi(t), , (4.3.15)-(4.3.16), . SG. . SG N , a=(a1,,aN) si(a), i=1,,N. , SG si(a) (Sandell ., 1978) , a*, Si(a*), i=1,,N, SG. , , , (Geoffrion, 1970). 4.6 . , i- i ( ), () .
, , , ..:
(4.3.19)
ei l- , dl, , :
(4.3.20)
zi(*) (4.3.20) i, a(t) , (4.3.16). , , . .
(4.3.21)
(4.3.15), L(*) :
(4.3.22)
k . , ( ) , (4.3.16) ai, i=1,,k. , , (Geoffrion, 1971a, b; Singh, 1980) ,
(4.3.23)
, J (4.3.17) (4.3.15)-(4.3.16) q(a) (4.3.21) a. , , =*, :
(4.3.24)
, , , Li . Li, (4.3.24) (4.3.15) a*, . q(a*) (4.3.21). , , q(a*) , , . , q(a) :
(4.3.25)
, f . a (4.3.19) 4.6. ( ), dl (4.3.19) l- el(t). , :
(4.3.26)
(4.3.27)
d0=e0. e(t) , s. .
4.1. .
1. , Li, a=a*, , . . ( 4.3.2, ).
2. , (4.3.26)-(4.3.27), a*(t) (4.3.19).
(4.3.28)
, . .
. , Pearson (1971), Singh (1980) Jamshidi (1983), . (Beck, 1974; Singh, 1975). 4.6, 6. 4.6.
4.3.1. 12- Pearson (1971) 4.7 :
(4.3.29)
:
(4.3.30)
:
(4.3.31)
( ).
: , 4.7 ( ) (4.3.29) , ( . 4.7):
(4.3.32)
ei, i=1,,6 . :
(4.3.33)
Ki(t) ni x ni . , Davison Maki 1973 Jamshidi 1980, (4.3.33). - , (4.3.19), (4.3.26)-(4.3.27), (Hewlett-Packard, 1979) . =0.1, (Pearson, 1971; Singh, 1980). 1 , 4.8, (4.3.29), Singh (1980). .
4.3.2. .
(4.3.34)
() x1 () ( ) 2 () u1 .
(4.3.35)
Q=diag(2,4,2,4) R=diag(2,2), , (4.3.35) (4.3.34) x(0)=(11 -11)T.
: (4.3.34)-(4.3.35), , (4.3.33) - =0.1. 15 , 4.9. 4.10.
4.3.2. .
, , , - , Takahara (1965), . , N ,
(4.3.36)
zi:
(4.3.37)
ui(t), (4.3.36)-(4.3.37), :
(4.3.38)
ai(t), pi(t), (4.3.37) (4.3.36) , .. i- :
(4.3.39)
:
(4.3.40)
(4.3.41)
(4.3.42)
(4.3.43)
ai(t) zi(t) , ai(t) zi(t), , . , . , ui(t) (4.3.43):
(4.3.44)
(4.3.40)-(4.3.42), :
(4.3.45)
(4.3.46)
() , , (4.3.33) . , . :
(4.3.47)
gi(t) , ni. (4.3.47) (4.3.46) (4.3.45) , (4.3.47) xi(t), :
(4.3.48)
(4.3.49)
Ki(tf) gi(tf) (4.3.41) (4.3.47).
(4.3.50)
(4.3.51)
() . . , , , ni(ni+1)/2 xi(0). , Ki(t), gi(t) (4.3.49) zi(t) xi(0). 4.4, .
. :
(4.3.52)
ai(t) zi(t) :
(4.3.53)
(4.3.54)
..:
(4.3.55)
(l+1) :
(4.3.56)
:
4.2 :
1. N (4.3.48) (4.3.50) Ki(t), i=1,2,N. ai(t) zi(t).
2. l- (4.3.49), (4.3.50). gi(t), i=1,2,,N.
3.
(4.3.57)
xi(t), i=1,2,,N.
4. 2 3 (4.3.56) :
5. , :
(4.3.58)
6. . , l=l+1 2.
, , , , N- 1 xi(0), , (4.3.56). , zi(t) , , , .
, Tokahara (1965), , . Titli (1972) (Singh, 1980) Cohen . (1974), . Smith Sage (1973) , 6. , , 4.4, 4.5. , .
4.3.3.
(4.3.59)
x(0)=(-1,0.1,1.0,-0.5)T, Q=daig(2,1,1,2), R=diag(1,2) . tf =1.
: , 4.2. Davison Maki (1973), -. (Newhouse,1962), :
(4.3.60)
(4.3.49) , 4.2 3, -
(4.3.61)
[a11(t),a12(t),z11(t),z12(t)] [a21(t),a22(t),z21(t),z22(t)]T (4.3.56), (4.3.58) . , 4.11. Ci =(1 1) . (4.3.59) , , i(t), i=1,2,3,4; yj(t) uj(t), j=1,2. , , 4.12. . , .
.
4.3.4.
u*.
: tf=2, =0.1 , Q1=Q2=I4, R1=R2=1. , i=1,2 0 , . , 4.13. . x0 .
4.3.1. 4.3.1 (4.3.59):
x(0)=(-1,0.1,1.0,-0.5)T , Q =diag(2,1,1,2), R=diag(1,2) . LSSPAK tf=2.
: , , RICRKUT LSSPAK/PC, . INTRPRD LSSPAK/PC . . , ; Enter, .
DOS GRAPHICS , , shift-PrtScr.
Optimization via the interaction prediction method.
Initial time (to): 0
Final time (tf): 2
Step size (Dt): .1
Total no. of 2nd level iterations = 6
Error tolerance for multi-level iterations - .00001
Order of overall large scale system = 4
Order of overall control vector (r) = 2
Number of subsystems in large scale system = 2
Matrix Subsystem state orders-n sub i 0.200D+01 0.200D+01
Matrix Subsystem input orders-r sub i 0.100D+01 0.100D+01
Polynomial approximation for the Ricatti matrices to be used.
Matrix Ricatti coefficients for SS# 1
0.453D+01 | -.259D+01 | 0.794D+01 | -762D+01 | O.186D+01 |
0.978D-01 | -.793D-01 | 0.252D+00 | .233D+00 | 0.571D-01 |
0.490D+00 | 0.759D-02 | -.109D+00 | 0.975D-01 | -.531D-01 |
Matrix Ricatti coefficients for SS# 2
0.112D+01 | -.815D+01 | 0.361D+01 | 0.455D+01 | 0.105D+01 |
-0.149D+00 | -.322D-01 | 0.697D-01 | .284D-01 | 0.183D-01 |
0.815D+00 | 0.642D-01 | -.295D+00 | 0.305D+00 | -.138D+00 |
System Matrix A
0.200D+01 | 0.100D+00 | 0.100D-01 | 0.000D+00 |
0.200D+00 | 0.100D+01 | 0.100D+00 | 0.500D+00 |
0.500D-01 | 0.150D+00 | 0.100D+01 | 0.500D-01 |
0.000D+00 | -0.200D+00 | 0.250D+00 | -0.120D+01 |
Matrix Input Matrix B
0.100D+01 | O.OOOD+00 |
0.100D+00 | O.OOOD+00 |
O.OOOD+00 | O.250D+O0 |
Matrix Input Cost Function R
0.100D+01 | O.OOOD+OO |
0.000D+O0 | 0.200D+01 |
Matrix Lagrange Multiplier Initial Values
0.100D+01 |
O.IOOD+Ol |
0.100D+01 |
0.100D+01 |
Matrix Initial conditions vector xO
-.100D+01 |
0.100D+00 |
0.100D+01 |
-.500D+00 |
Subsystem no. 1 at 2nd level iteration no. 1
Subsystem no. 2 at 2nd level iteration no. 1
At second level iteration no. 1 interaction error = 0.347D+00
Subsystem no. 1 at 2nd level iteration no. 2
Subsystem no. 2 at 2nd level iteration no. 2
At second level iteration no. 2 interaction error = 0.771D - 03
Subsystem no. 1 at 2nd level iteration no. 3
Subsystem no. 2 at 2nd level iteration no. 3
At second level iteration no. 3 interaction error = 0.507D - 03
Subsystem no. 1 at 2nd level iteration no. 4
Subsystem no. 2 at 2nd level iteration no. 4
At second level iteration no. 4 interaction error = 0.323D - 04
Subsystem no. 1 at 2nd level iteration no. 5
Subsystem no. 2 at 2nd level iteration no. 5
At second level iteration no. 5 interaction error = 0.310D - 05
4.14, 4.15.
.
4.3.3
(4.3.15) (4.3.17) , , Si (4.3.17) , . , Li (4.1.24) (4.3.15). i- :
(4.3.62)
i-
(4.3.63)
(4.3.64)
, . . .
4.3.5. :
(4.3.65)
(u1,u2), , (4.3.65),
(4.3.66)
.
: (4.3.65) (4.3.66) , .
(4.3.67)
(4.3.68)
(4.3.69)
:
(4.3.70)
. , z1 (4.3.70). .
1,
1,
2,
2,
4.3.3.. 1.
Bauman (1968)
(4.3.71)
:
(4.3.72)
(4.3.73)
. (4.3.72) (4.3.73) :
ki(t) i- . :
, .
4.3.3.. 2.
Singh (1980) , , , z , .. z :
G :
G , . :
, p2 2 2, , . , (4.3.40) (4.3.51), , () .
ki(t) gi(t) . , .
(4.3.74)
, p ( ) . A, B, Q R -, (4.3.74) N , z, V=G-1.
. , 1, - , , , ,
Copyright (c) 2024 Stud-Baza.ru , , , .