,,,
- , .
- , , .
Knowledge system - .
- .
, .
- , , . . , .
. , , .
, .
, , .
.
.
: ; .
, .. , , . , , , . . . . .
.
. , . . .
.
. . .
.
t t.
= t t
:
(1999) = { -1-99, -1-98, , -1-94, -1-99,}
(1998) = { -1-98, -1-97, , -1-93, -1-98,}
t t = { }
= { , , , , }
1
2
3
( : 1 1, 22, , nn)
. , ; .
. , , .
:
( :
)
.
:
(:
_,
_,
_,
_,
_,
_)
, .
:
:
(: 11,22, , nn) .
(: ii)
:
(, , _)
(, , _)
(, , )
(_, , _)
(_, , )
.
(: ii)
.
(: 11,22, , nn)
i
i ,
:
(:
__,
_)
(: ii)
:
(, __,
, _)
(1,2, , n)
(1,2, , n)
:
( (__, _),
(, ))
:
(: 11,22, , nn) i i
:
:
(: -
-
) -
:
(: ii) , i i
:
:
(1, , ) - 1, 2
(1, , ) -
(2, , )
(2, , )
:
(1,2, , n)
( (, ) -
, , .
- (, , ).
(, , , ).
:
(1, , , 760)
0 100
0 1
-1 1
0 .
.
(
(1, , , 760)
(1, , , 740)
*
* (, , , 760, 740)
, , .
:
(_, , , _, ).
_, -, _ , .
.
.
, . . - . (). . .
1 |
2 |
. . . . . |
n |
1 |
2 |
. . . . . |
n |
.
(1,2, , n) . . .
, .
2 2 |
1 1 |
47 54 |
60 50 |
2 1 |
.
i
sup j
sup
;
sup .
i j, t Ki t Kj t
( t i j)
Npr .
.
sup
sup
sup
sup
sup
K
sup
sup
sup
sup
sup
sup
sup
sup
sup
sup
sup
sup
sup
sup
Ki Kj, Ki Kj.
part
part
sup
sup
part
part
part
part
part
part
part
sup
sup
sup
sup
.
k
isa
K
i
ius K -
1 ius K
K2 ius K
. . . . . . .
Kn ius K
, 1, 2, , n, i.
4.
.
.
Ki sup Km
Ki part Km
,
.
K1 ins K2, K2 ins K3,,Kn-1 ins Kj
, Kn ins K1
K isa Ki sup Kj
K isa Kj
isa
sup
isa
K1
K2
K3
K5
K4
R6
R7
R3
R2
R1
R5
R4
.
Ki ins K
℧ Ki , ,
Ki sup K
℧ Ki = K
=
= = =∅
(, , , _, )
={, }
, = \
K (K1, K2, K3, K4, K5)
K\K5 5.
.
⋃=
⋃=∅
(_
,
_)
(K A1K1, A2K2)
K1/(K, K2)
, .
, .
:
K
<> < > < > < > < > <>.
.. -1-98 4 -301.
(:
_
_
_
_
)
.
(ER )
Entety Relation Diagramm
N 1
*
1 N . * .
, , ,
. .
.
.
, .
1- . 1- .
:
.
S
- .
f- ;
;
.
Z .
-
={0;1}
-
2-;
1-;
S={, , , _, _, }
1) : ;
f A1 B
2) : ;
3) :
4) :
5) _: _
6) _: _
7) 0 :
C B
1:
.
.
.
t:
8) _:_
_: _
9) : _
: _
10) _:
_:
11) +: *
12): *
(. ) -
. .
- .
= {.1, .2, .3, .4}
= {.1, .2, 3}
={1,2, 3, 4, 5, 6, 7, 8}
_ = {_, _}
_ = {, }
= {1,2,,t}
- .
.
.(.1)=1
.(.2)=1
.(.3)=2
..
2) .(.1)= .3
.(.2)= .1
.(.3)= .3
3) .(.1)=0
.(.2)=5
.(.3)=5
..
4) (.1)=5
(.2)=12
(.3)=0
5) _(.1)=_
_(.2)=_
_(.3)=_
_(.4)=_
.
6) _. (.1)=
_. (.2)=
_. (.3)=
.
10) _(1)
_ (2)
_(3)
_ | _ | |||||
1 | .1 | .3 | 0 | 5 | 1 | 0 |
2 | .1 | .1 | 5 | 12 | 0 | 1 |
3 | .2 | .3 | 5 | 10 | 1 | 0 |
4 | .2 | .2 | 10 | 17 | 0 | 1 |
5 | .3 | .3 | 10 | 16 | 1 | 0 |
6 | .3 | .1 | 16 | 26 | 0 | 1 |
7 | .4 | .3 | 16 | 22 | 1 | 0 |
8 | .4 | .2 | 22 | 32 | 0 | 1 |
_ | |
.1 | _ |
.2 | _ |
.3 | _ |
.4 | _ |
_ | |
.1 | . |
.2 | . |
.3 | . |
3) :
:
) ,
) ,
) -
,
-
) -
,
, - .
) - , ,
) (), , .
) , :
, “x”
( )
) , ,
:
b=> 2
_((2))=n
2 .1 .1 5 12
)
3)
8 12.11.99.
.
.
:
-
ii .
2- ,
- , .
, .
, .
m,n const
.
{n/y}:
(1) (2) => a(x)c(x,n) (5)
(3) (5) , {m/n}=> c(m,n) (6)
(4) (6) => 0
, .. , .
=>
, .
: ? a
a: - b,c,d.
b: - e,f.
c.
e.
f.
?-a
a(1)
a(2)
a(3)
|
|
||
1 2 3 4 5 6 |
?- a. ?-b,c,d ?-e,f,c,d ?-f,c,d ?-c,d ?-d |
a:-b,c,d. b:-e,f e f c d |
-b,c,d. -e,f,c,d -f,c,d -c,d -d 0 |
a: - b;c
b: - d,e
c: - g,f.
e: - i,h
g: - h,j
d.
f.
h.
?-a
, -
; -
.
.
-
.
,
>:=< >
E <> < > [=< >]
:
5
=
=
=65 __
_=
0-100
27
=
=
=0 =10
.
, , .. - , ,
<>::<>[<>ȅ<>]
<>::=<>=<>
, , , -
<>::=<>=<>
<>:=<>=<>=< >
.
, .
, , , , .. = 100
, .
?
25
25 55
55
=min()
- ,
= =50
= =70
=0
( )
9 ()
|
|
|
|
1 2 3 4 5 |
|
|
, , , .
( )
6 7
2 3
1 2 3 4 5
4 5 6 7 8
F1 F2 F3 F4 F5
1 2 3 4 5 6 7 8 |
1 2 3 4 5 6 7 8 |
6,7 1,2 3 |
6 1 3 |
2,3 1,5,3 6,7,8 |
F1 F2 F3 F4 F5 |
.
,
. , ,
=60
7
. , , .
, .. .
, , .
, , .
. , .
. .
.
(i); Q; P; A; =B; N
(i) :
Q ;
P ( )
A=>B , - , - ;
N , , .
.
A111
P11
Q1
A112
Q2
P12
P21
P22
P23
..
..
(: 11, A2K2, .,AnKn)
(: A1k1, A2k2,.,An kn)
( :
1 ( 1)
2 ( 2)
..
n ( n))
.
- - .
. :
, , .
: , , .
:
;
;
..
(FMS).
:
U unique
S same- -
R range ;
0 override
U .
S
U
=60
=30
=32
.
R
=2-200
=2-50
=32
, , .
=60
=30
=32
11 3.12.99
OPS-5
<->::=(<> {|<> <>}+)
{}+ -
< >::=({ })
<>::=< -> | < ->
(
)
( : , )
:
<>::=(< > <> <>)
<>::={<>}+
<>::=<> | - <>
<>::= < > | < > | < >
< >::=({>}+) |
# ( <> )
(<> [{<> <>}+] )
# ( )
, ..
(
<> )
..
< >::= (<> {<> <<{< >}+>>}+)
, . .
# (
<>
<< >> )
< >::= (< > {< >{{< >}+}}+)
# ( {<> 100 <> 200} )
( 160)
<>:={<>}+
<>::=(make < > | remove <> | (modif <> {<>< >} +)
# ( _
(
)
,
( ) >
(make
)
(modif1 ))
,
,
, .
, ,
.
:
;
,
, , .
, .. , , , .
,
.
, , , .
- .
, .
.
.. ,
- , .
.
.
,
3 2- 3-. =>
.
2
1.1. ,
, ,
.
, 2- .
12 10.12. 99.
[10,40]
[10;20]
[20;30]
[30;40]
1
0.7
0.1
10 15 40
-
-
-
- .
-
0.6
-
-
-
: - .
-
&
0,6 x
=> .
:
10 40
.
1 . .
.
.
.
.
.
| | | | | | | | x x
10 11 12 13 14 15 16 17 18 18
x x
A
x
AB
x
.
A1,A2,.,An
x1,x2,,xn
x1 X1 x2 X2 xnXn
A1 xA2 x xAn = {<x (x1,x2,,xn )/( x1,x2,,xn )>}
x (x1,x2,,xn ) = min{A1 (x1), A2 (x2)An (xn) }
A = {<1/10>, <0.8/15>, <0.2/20>}
B = {<0.7/2>, <0.5/4>}
A xB = {<0.7/(10,2)>, <0.7/(15,2)>, <0.2/(20,2)>, <0.5/(10,4)>, <0.5/(15,4)>, <0.2/(20,4)>}
.
An = {<An(x)/x>}
A2 = con(A) -
A
1
x
A
1 A2
A0.5
0 x2
< x x0.5
> x
A0.5
= dil(A)
.
2. 0 5.
x | 0 | 1 | 2 | 3 | 4 | 5 |
n1 |
- | - | - | 10 | 8 | 4 |
n2 |
10 | 10 | 10 | - | 2 | 6 |
A = n1 / (n1 + n2)
A (0) = 0
A (1) = 0
A (2) = 0
A (3) = 1
A (4) = 0.8
A (5) = 0.4
.
u
p
u
p
u
0 X
L
x
x
u 1
<, x, A>
-
,
.
<, T, , G, M>
-
{, , },
[0; 1]
G
, {, , }, {, , ..}
-
= {, , }
X = [0;1]
.
* = G (T)
- .
(1 2) = 1 2
(1 , 1 , 1)
(2 , 2 , 2)
(1 2) = 1 2
(^) = ^1
( ) = con (A )
( ) = dil (A )
.
, , . , .
(kcus :
1( 1);
2( 2);
n( n))
(kcus
)
, , . . .
(kcus :
(S: )
(: )
11, 12 (cus: R1, )
1 (f: )
(: )
(sys: cus*1))
R1
(kcus :
(S: )
(: )
121, 22 (cus: R1, )
2 (f: )
(: )
(sys: cus*2))
(kcus :
(S: )
(: )
31, 32 (cus: R1, )
3 (f: )
(: )
(sys: cus*3))
.
<>R:<>
:
= cus: 11 R1 cus: 12 R1 K1 =
21R122R1K2 31R132R1K3
= 21R122R1K2 R1 31R132R1K3 R1 K1
, , . . .
.
1
2
3
4
5
:
TS = PR4dt&P1R3 10,P2&P2R1P3&P4R3 2,P5
t = 15 20
PR4dt , P1R3 10,P2 P2R4 dt + 10
P1R3 10,P2 P1R1P2
P4R3 2,P5 P4R1P5
TS* = P1R1P2& P1R1P3& P2R1P3& P4R1P5
.
, , , . . . , , .
i
+ = {01+, 02+0nj+} .
- = {01-, 02-0j-}
, , Kj.
. - .
Z = {z1, z2, , zr}
Zi = {zi1, zi2, , zini}
Qi = {z1j1, z2j2, , zrjr}.
- , - . : .
.
hij =
1, i- j-
0,
hij
:
Z = {z1, z2} {, }
Z1 = {z11, z12} {, }
Z2 = {z21, z22, z23} {, , }
j+ = {01+, 02+} j- = {01-, 02-, 03-}
01+ = (z11, z21) 02+ = (z11, z22)
01- = (z11, z23) 02- = (z12, z21) 03- = (z12, z22)
&i hij -
0 = max(xij 1/i), 0 , xij , i .
:
0 = 3/5 1/2 = 0.1
j+ = {01+, 02+} j- = {01-}
+
-
j+
j-
-1+
-1-
Copyright (c) 2025 Stud-Baza.ru , , , .