,,,
, 11
5
, 2004
. - , 4 . 4 (. 1) - , (), () ( 2) [1,2].
Π
Ѡ
. 1 . . 2 .
, , . . , (3), .. . . , ( 4).
Π Π
. 3 . 4
, .
, , . (, ) ( ). ( ) (, ). , , -.
: , . .
I. .
:
- 𠠠
S= S1 SABC= S
SOBC= S2 SOAC= S3
:
D
S²=S1²+S2²+S3²
.
AD- , , D- AD , OD , .. AD ( ). SABC= 1/2 BC×AD
SOBC=1/2 BC×OD
SOAB =1/2 OA×OB
SOAC=1/2OA×OC
S² OBC+S ²OAB +S ²AOC= 1/4(BC²×OD²+OA²×OB²+OA²×OC²)=
=1/4(BC²×OD²+OA²(OB²+OC²))=1/4(BC²×OD²+OA²×BC²), ..
²+²=² ( )
S²OBC+S²OAB+S²OAC=1/4 BC²(OD²+OA²)=1/4 BC²×AD² , ..
OD²+OA²=AD² ( )
.. S²OBC+S²OAB+S²OAC=S²ABC
S²1+S²2+S²3=S², .
II. .
:
-
, b , - .
, -
: b
²+²+²=2(² + b ² +²)
.
² = ² + b ²
² = b ² + ² ( )
² = ² + ²
² + ² + ² =2² + 2 b ² +2² , .
:
- 𠠠
, b , - .
: ࠠ b
V=(1/6) b
. Π
,
V=(1/3 )S h
, ࠠ , .. , ..
V=(1/3) SOBC , ..SOBC=(1/2) b .
V=(1/6) b , .
:
h = (a۰b۰c)/√a²b² + b²c² + a²c²
a, b, c
:
-
= , = b, =
= h 蠠
Ѡ
h
: b
____________
h = (abc) / √a²b²+b²c²+a²c²
.
:
V = (1/3)Sѷh
C : V = (1/6)abc ( 3 ).
,
h = (abc) / (2S)
:
___________________
SѠ = √² + S²Ѡ + S²
____________
.. SѠ = (1/2)√a²b²+b²c²+a²c²
,
____________
h = (abc) / √a²b²+b²c²+a²c² , .
:
____________
cos α = h / a= (bc) / √a²b²+b²c²+a²c²
____________
os β = h / b = (ac) / √a²b²+b²c²+a²c²
____________
cos γ = h / c= (ab) / √a²b²+b²c²+a²c²
a, b, c ;
α
β b
γ .
h
:
- .
= , = b, = -
Ġ = h Ѡ
:
____________
cos α = (bc) / √a²b² +b²c² +a²c² h
____________ ࠠ
cos β = (ac) / √a²b² +b²c² +a²c² α b
____________ β
cos γ = (ab) / √a²b² +b²c² +a²c² γ
Π
.
cos α = / = h/a
____________
h = (abc) / √a²b²+b²c²+a²c²
____________
cos α = (bc)/√a²b²+b²c²+a²c² , .
:
____________
cos β = / = d/b = (ac)/√a²b²+b²c²+a²c²
____________
cos γ = / = d/c = (ab)/√a²b²+b²c²+a²c²
, , :
________
R = ( ½) √a²+b²+c²
堠 a, b, c
ʠ L
:
- 𠠠
= , = b, =
R ,
.
:
_______ Ġ
R = (1/2)√a²+b²+c² b
.
ࠠ
. , .. ..:
_______ _____ ________
= D = √a²+b²+c² ( = √b²+c² , = , = √²+² )
, :
_______
R = (1/2)D = (1/2)√a²+b²+c²,
.
VII. , , :
abc
r = ____________ ,
√a²b²+b²c²+a²c² + ab + bc + ac
a, b, c - .
: -
= , = b, = . 1
r -
:
r = h / (1 + cosα + cosβ + cosγ)
: . 1 1 = r.
_ _
do - , .. |d| = 1
(cos α; cos β; cos γ) .
__
1 (r; r; r) :
___ __
= |1|cosδ , δ 1 .
___ __ _ __ _
|OO1|cosδ = (OO1do) = rcosα + rcosβ + rcosγ , (1d) .
= h,
ࠠ h = OK + KH, ..
h = |OO1|cosδ + r, .. = r
( 1 ).
h = r cosα + r cosβ + r cosγ + r
..
r = h / (1 + cosα + cosβ + cosγ)
4- 5- :
(abc)/√a²b²+b²c²+a²c² abc
1 + (bc + ac + ab) / √a²b²+b²c²+a²c² √a²b²+b²c²+a²c² + ab + bc + ac
:
-
= = =
,
Π
___
√1/3
.
:
_________ __
= √ ² +OC² = √2
_________ __
= √ ² +OB² = √2
_________ __
= √ ² + ² = √2
.. , .
. . ,
:
_ _ _ ___
= (√3/2) = (√3/2)√2 = √3/2
, . :
= /√2
:
os _ = /Ġ = 1/√3 , .
: 8 . , .
, , .
V.
. .
: 96 (.131) : .., .., ... .-.: , 1979.
b, . .
:
- ,
頠 H
b
= , .
: b
S. Π
1) :
S . = SѠ + S + SѠ + S
SѠ = (1/2); S = (1/2)b; SѠ = (1/2)b;
:
______ ________
= √ ² +b² ; = √ ² +² , .
Ġ _ , :
______
/ b = /Ѡ = (b)/ = (b)/ √ ² +b²
, _______________ ________________________
= √ (b)/( ² +b²) + ² = √[(b)² +(bH)² + (H)²]/( ² +b²)
_________________
S= (1/2) √ (b)² +(bH)² + (H)²
_________________
C, S .= (1/2) [√ (b)² +(bH)² + (H)² + + b + b]
2) :
S .= SѠ + S + SѠ + S
SѠ = (1/2); S = (1/2)b; SѠ = (1/2)b;
___________________ _________________
S= √ S ² + S² + S ² = (1/2)√ (b)² +(bH)² + (H)²
_________________
C, S .= (1/2)(√ (b)² +(bH)² + (H)² + + b + b)
280 (.76) : .., .., .. . .-.: , 1994.
. ,
ʠ L
:
LM - ᠠ
= , = b, =
Δ , -
. Ġ
:
SѠ
ࠠ
1) :
:
______ __
= = = √ ² + ² = √2
:
_ _ _
S= (√3/4)()2 , .. S= (√3/4)(22) = (√3/2)2
2) :
SѠ = S = SѠ = (1/2)2 ( );
___________________
S= √ S ² + S² + S ²
_________ _
C, S= (1/2) √ ² + ² + ² = (√3/2)2
... . . 6-, , .-., 1952.
... . , .1 2.- .: 1951.
.., .., .. . . .-.: , 1994.
Copyright (c) 2025 Stud-Baza.ru , , , .