курсовые,контрольные,дипломы,рефераты
Гипотеза Биля формулируется следующим образом: неопределенное уравнение:
Аx +Вy= Сz/1/
не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Суть гипотезы Биля не изменится, если уравнение /1/ запишем следующим образом:
Аx = Сz - Вy/2/
Уравнение /2/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С.
Уравнение /2/ запишем в следующем виде:
Аx = (С0,5z) 2 - (В0,5y) 2 /3/
Обозначим:
В0,5y =V /4/
С0,5z =U /5/
Отсюда:
Вy =V2 /6/
Сz =U2 /7/
В = /8/
С = /9/
Тогда из уравнений /2/, /6/ и /7/ следует:
Аx = Сz -Вy =U2-V2 /10/
Уравнение /10/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:
Аx = (U-V) ∙ (U+V) /11/
Для доказательства гипотезы Биля используем метод замены переменных. Обозначим:
U-V=X /12/
Из уравнения /12/ имеем:
U=V+X /13/
Из уравнений /11/, /12/ и /13/ имеем:
Аx = X· (V+X+V) =X (2V+X) =2VХ+X2 /14/
Из уравнения /14/ имеем:
Аx - X2=2VХ/15/
Отсюда:
V=/16/
Из уравнений /13/ и /16/ имеем:
U= /17/
Из уравнений /8/, /9/, /16/ и /17/ имеем:
B = /18/
C = /19/
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа А на число X, т.е. число X должно быть одним из множителей, входящих в состав множителей числа А. Другими словами, число А должно быть равно:
A = N∙ X, /20/
где N - простое или составное целое положительное число.
Из уравнений / 18/ и /19/ следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел A и X: оба числа должны быть четными или оба нечетными.
Из уравнений / 18/, /19/ и /20/ следует:
В= /21/
C= /22/
Обозначим:
P = /23/
Q = /24/
Тогда:
B = /25/
С = /26/
Из уравнений /23/ и /24/ имеем:
Q = /27/
Таким образом, из уравнений /26/ и /27/ следует:
С = /28/
Из анализа уравнений /25/ и /28/ следует, что поскольку разность между числами P и Q равна всего лишь:
Q - P = P + 1 - P = 1, /29/
то по меньшей мере одно из чисел В или С является дробным числом.
Допустим, что число В - целое число.
ПРИМЕРЫ: X=33 = 27; P = 53 =125; y=6.
По формуле /25/ имеем:
B = =.
Тогда:
при z=6: С = = - дробное число.
при z=5: С = = - дробное число.
при z=4: С = = - дробное число.
при z=3: С = = - дробное число.
при z=7: С = = - дробное число.
Очевидно, что если (am) 2 = a2m, то (am + 1) 2 ≠ b2m,
где: a - целое число;
b - целое число.
Таким образом, одно из чисел В или С - дробное число. Следовательно, гипотеза Биля не имеет решения в целых положительных числах.
Краткое доказательство гипотезы Биля Гипотеза Биля формулируется следующим образом: неопределенное уравнение: Аx +Вy= Сz/1/ не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Магические квадраты
Самостоятельная деятельность учащихся на уроке математики
Софья Ковалевская – царица математики
Путешествие по стране чисел
Три задачи по теории чисел
Способы отбора статистических данных
Преследование на плоскости
Приближённое решение алгебраических и трансцендентных уравнений
Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.