База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Лабораторная работа №5 по "Основам теории систем" (Транспортные задачи линейного программирования) — Теория систем управления

Лабораторная работа № 5

Телешовой Елизаветы, гр. 726,

Транспортные задачи линейного программирования.

1. Постановка задачи.

В некотором царстве, некотором государстве жил-был кот Василий, который очень любил мышей… на обед. А обедал он исключительно в амбаре своего хозяина, да так хорошо, что бедные мыши и носу не могли высунуть из своих нор. Но всю жизнь в норе не просидишь, есть то хочется, и стали мыши думать и гадать, как им провести кота Василия и до заветных пищевых ресурсов амбара добраться.

В амбаре было 4 мышиных норы: в первой проживало 15 мышей, во второй – 20, в третьей – 10 мышей, а в четвертой – 25 мышей, а также 5 источников пищи, от которых и кормилась вся эта орава мышей: у окорока – 5 мышей, у мешка крупы – 18 мышей, у мешка муки – 17 мышей, у мешка картошки – 22 мыши и у стопки старых газет и журналов эротического содержания – 8 мышей.

И тут мыши вспомнили, что когда-то в стопке журналов лежала книжка по математическому программированию. Конечно мыши давным-давно успели ее сгрызть, но кое-что из нее они, пока грызли, прочитать успели, в частности, как решать транспортные задачи.

Считая что количество мышей, проживающих в

1);

2)

ну и конечно

Исходя из этих условий они составили математическую модель процесса своего питания:

; ;

Ну, и для наглядности нарисовали ее в виде таблицы:

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5

18

17

22

8

нора 1

15

нора 2

20

нора 3

10

нора 4

25

В левом верхнем углу каждой ячейки таблицы мыши указали число попавших в лапы кота (в процентах) по отношению к общему числу мышей из

Безусловно, цель мышей – добраться до еды с минимальными потерями по дороге, то есть:

Таким образом:

2. Двойственая задача.

Необходимо, конечно, оценить и выгодность передвижения из каждой норы к каждому пищевому ресурсу. Для этого мыши оценили так называемые потенциалы нор (

  (1).

Система (1) и будет служить в дальнейшем критерием оптимальности плана.

Запишем подробно двойственную задачу на основе этого ограничения:

;  ;  ;  ; 

Критерием двойственной задачи будет максимизация выгодности:

3. Метод последовательной  максимальной загрузки выбранных коммуникаций.

Первое, что пришло на ум мышам – использовать те источники пищи, доступ к которым легче, и они решили построить начальный опорный план по методу максимальной загрузки, исходя из формулы:

   (2).

т.е. выбираются те варианты, которые могут обеспечить едой максимальное количество мышей, и эти варианты будут использоваться в соответствии с (2).

Поскольку хотят есть все мыши во всех норах, то модель закрытая, т.е.

Общая схема построения начального опорного плана по методу максимальной загрузки такова:

1) Выбираем коммуникацию, которую можно больше всего загрузить.

2) Максимально ее загружаем в соответствии с (2).

3) Корректируем объемы производства и потребления на величину выбранной перевозки, вычисляя остатки производства и потребления:

;

4) Вычеркиваем в транспортной таблице строку или столбец с нулевым объемом производства или потребления:

если  – вычеркиваем

если  – вычеркиваем ;

5) Повторяем этот процесс с пункта 1 по 4, пока не будут перечеркнуты все строки или столбцы

В нашем случае это выглядит следующим образом:

I

II

III

IV

V

VI

VII

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5  2  0

18  0

17  2  0

22  0

8  0

нора 1

15  0

нора 2

20  2  0

2

нора 3

10  2  0

2

нора 4

25  3  0

3

Римскими цифрами пронумерован порядок итераций.

I.  – 4 столбец исключен.

II.  – 2 столбец исключен.

III.  – 1 строка исключена.

IV.  – 5 столбец исключен.

V.  – 4 строка исключена.

VI.  – 3 строка и 1 столбец исключены.

VII.  – 2 строка и 3 столбец исключены.

Порассуждав таким образом, мыши получили следующий  начальный опорный план:

;

.

По этому опорному плану коту достанется аж 13 мышей (0,18 часть мыши отдельно вряд ли выживет). “Жирно ему будет”-, подумали мыши и стали составлять другой опорный план методом северо-западного угла.

4. Метод северо-западного угла.

Данный метод очень прост, пункты 1 и 2 в методе максимальной загрузки заменяются на следующий: очередная загружаемая коммуникация  выбирается в левой верхней клетке сохраненной части таблицы, т.е. в северо-западном углу таблицы. Математически это выражается следующим образом:

I – множество номеров пунктов производства;

, J – множество номеров пунктов потребления;

Последовательно по итерациям метода получаем:

I.  – 1 столбец исключен.

II.  – 1 строка исключена.

III.  – 2 столбец исключен.

IV.  – 2 строка исключена.

V.  – 3 столбец исключен.

VI.  – 3 строка исключена.

VII.  – 4 столбец исключен.

VIII.  – 4 строка и 5 столбец исключены.

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5  0

18  8  0

17  5  0

22  17  0

8  0

нора 1

15 10 0

нора 2

20 12 0

нора 3

10  5 0

нора 4

25  8 0

Получили следующий опорный план:

Те же самые 13 мышей, и даже хуже предыдущего опорного плана (если учитывать сотые). Пришлось мышам использовать метод минимальных затрат.

5. Метод минимальных затрат.

В этом методе в первую очередь загружаются те коммуникации, в которых затраты на перевозку минимальные. В нашем случае, это те пути, мышиные потери на которых минимальны.

I

II

III

IV

V

VI

VII

VIII

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5  0

18  0

17  0

22  20  18  15  0

8  0

нора 1

15  0

нора 2

20  3  0

нора 3

10  2  0

нора 4

25 7 2 0

I.  – 2 столбец исключен.

II.  – 1 столбец исключен.

III.  – 4 строка исключена.

IV.  – 5 столбец исключен.

V.  – 3 строка исключена.

VI.  – 3 столбец исключен.

VII.  – 2 строка исключена.

VIII.  – 1 строка и 4 столбец исключены.

Опорный план:

Целевая функция:

Этот опорный план понравился мышам значительно больше, но все равно потери достаточно велики (7 мышей). Теперь требовалось решить эту задачу и найти оптимальный план. И сделать они это собрались самым точным методом – методом потенциалов.

6. Решение задачи методом потенциалов.

Если план действительно оптимален, то система (1) будет выполняться, т.е.:

1) для каждой занятой клетки транспортной таблицы сумма потенциалов должна быть равна  для этой клетки;

2) для каждой незанятой клетки сумма потенциалов не больше (меньше или равно)

Построим для каждой свободной переменной плана числа  и они должны быть положительны. Так как число потенциалов равно 9, а система состоит из 8 уравнений, то для нахождения какого-либо решения этой системы необходимо первому из потенциалов придать произвольное значение (например:

                          

                      

                            

                             

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5

18

17

22

8

нора 1

15

нора 2

20

нора 3

10

нора 4

25

Таким образом, после того, как все потенциалы найдены, можно искать

                          

                               

                           

                           

                    

                     

Видно, что  и

Строим цикл:

(2; 1) – начальная точка цикла;

Что характерно, для этой точки (впрочем как и для других) мы можем построить только один цикл. Каждой клетке цикла приписываем определенный знак:

(2; 1) – “+”, (4; 1) – “-”, (4; 4) – “+” (2; 4) – “-”.

+

+

-

-

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5

18

17

22

8

нора 1

15

нора 2

20

нора 3

10

нора 4

25

В клетках с “+” – увеличиваем загрузку, а в клетках с “-” – уменьшаем. Величина, на которую увеличиваем или уменьшаем всегда одна и она определяется из условия:

“-”.

Таким образом получаем:

; 4), где в процессе реализации цикла загрузка уменьшится до 0.

Перейдем к новому опорному плану

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5

18

17

22

8

нора 1

15

нора 2

20

нора 3

10

нора 4

25

                          

                      

                            

                             

Определяем

                          

                               

                           

                           

                       

                    

Все  больше 0, следовательно план оптимальный.

Целевая функция при этом плане:

М-да, незначительное улучшение для мышей. Целых 6 мышей и еще один мышиный хвостик – такова ежедневная дань коту Василию. Но делать нечего, и стали мыши действовать по этому плану.

7. Открытая модель.

И все было бы хорошо, но в 3 норе появился дополнительный приплод – 10 мышей, следовательно в ней стало проживать 20 мышей, а количество мышей, питающихся у источников пищи, осталось тем же. Получилась так называемая открытая модель, где:

   (3)

и ее необходимо сбалансировать. Для этого нужно ввести фиктивный пункт потребления  с объемом потребления:

;

и дополнительные переменные  приводящие ограничение-неравенство (3) к виду равенств и понимание как фиктивные перевозки из пунктов производства в фиктивный пункт потребления. Новая математическая модель:

; ;

При этом во 2 и 3 норах все мыши должны быть накормлены (во второй – самые умные мыши, а в третьей – большой приплод), поэтому второе и третье ограничения – уравнения. В первое и четвертое ограничения добавим новые переменные R1 и R4 для уравновешивания системы. А так как этих источников пищи на самом деле нет, то и затраты (потери по дороге) на них нулевые.

В транспортной таблице в последнем столбце введем еще 2 переменные в (2; 5) и (3; 5) – R2 и R3 , чтобы столбец был полностью заполнен, а так как перевозки в этих коммуникациях не должны быть, то наложим на них очень большие штрафы М и включим все новые переменные в целевую функцию:

Так как критерий стремится к минимуму, то в оптимальном плане перевозки с самыми большими затратами не должны осуществляться (т.е.

VIII

I

II

III

IV

V

VI

VII

+

+

-

-

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

R

5  0

18  15  0

17  0

22  10  0

8  0

10  5  0

нора 1

15  5

10

5

нора 2

20 3 0

3

17

нора 3

20 12 0

12

8

нора 4

25 10 5 0

5

15

5

                                               

                          

                                  

                         

Определяем

                            

                           

                           

                           

                       

                     

 меньше 0, поэтому существующий опорный план можно улучшить. Поскольку и переходим к новому опорному плану.

+

+

-

-

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

R

5

18

17

22

8

10

нора 1

15

нора 2

20

3

17

нора 3

20

12

8

нора 4

25

5

15

                                               

                          

                      

                         

Определяем

                          

                               

                           

                           

                                

                    

 меньше 0, поэтому существующий опорный план можно также улучшить. Теперь мы будем вводить в базис вектор, соответствующий клетке (2; 1). Строим цикл и переходим к новому опорному плану.

                                               

                          

                      

                         


                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

R

5

18

17

22

8

10

нора 1

15

нора 2

20

17

нора 3

20

12

8

нора 4

25

18

Определяем

                          

                               

                           

                           

                                  

                    

Все  больше 0, следовательно план оптимальный.

Целевая функция при этом плане:

Этот план чуть хуже предыдущего, к тому же 10 мышей из первой норы остаются голодными. Во всяком случае питаются раз в три дня.

8. Запрещенные перевозки.

Но кот Василий тоже не дремал, и, произведя те же операции, что и мыши в свое время, определил оптимальный план их передвижений (см. пункт 6). Посмотрев на него, он сразу решил взять под особый контроль путь от второй норы к мешку муки и от четвертой норы к мешку крупы.

Вскоре мыши это на себе почувствовали, а почувствовав, кинулись составлять новый оптимальный план, пометив эти два маршрута как чрезвычайно опасные буквой М

                 Пища

Норы

окорок

мешок крупы

мешок муки

мешок картошки

журналы

5

18

17

22

8

Нора 1

15

Нора 2

20

Нора 3

10

Нора 4

25

                          

                          

                                      

                         

Видно, что этот план уже является оптимальным.

Целевая функция:

Как зыбко мышиное счастье. Стоило коту взяться за дело всерьез, и потери возросли чуть ли не в два раза.

Лабораторная работа № 5 Телешовой Елизаветы, гр. 726, Транспортные задачи линейного программирования. 1. Постановка задачи. В некотором царстве, некотором государстве жил-был кот Василий, который очень любил мышей… на обед. А обедал он исклю

 

 

 

Внимание! Представленная Лабораторная находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Лабораторная по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Лабораторная работа №4 по "Основам теории систем" (Послеоптимизационный анализ задач линейного программирования)
Лабораторная работа №3 по "Основам теории систем" (Теория двойственности в задачах линейного программирования)
Лабораторная работа №2 по "Основам теории систем" (Решение задач линейного программирования симплекс-методом. Варианты разрешимости задач линейного программирования)
Лабораторная работа №6 по "Основам теории систем" (Решение задачи о ранце методом ветвей и границ)

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru