База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Марганцево-цинковые элементы — Химия

С СОЛЕВЫМ ЭЛЕКТРОЛИТОМ

1. Общие сведения

Уже более 100 лет первичные марганцево-цинковые элементы с солевым электролитом (элементы Лекланше) и батареи из них являются основным типом первичных химических источников тока. В настоящее время во всем мире ежегодно производятся 7—9 млрд. таких элементов. Широкое распространение марганцево-цинковых элементов связано с удачным сочетанием ряда их качеств: относительной дешевизны, удовлетворительных электрических показателей, приемлемой сохраняемости и удобства в эксплуатации. Недостатком их является резкое падение напряжения при разряде — в зависимости от нагрузки конечное напряжение составляет 50—70 % начального.

Марганцево-цинковые элементы изготавливаются в виде су­хих элементов с невыливающимся электролитом. Они выпускаются емкостью от 0,01 до 600 Ач и массой (отдельного элемента) от 0,5 г до 7 кг. В основном производятся малогабаритные элементы емкостью до 5 А*ч.

Первый марганцево-цинковый элемент, созданный в 1865 г. французским инженером Ж.-Л. Лекланше, представлял собой стеклянную банку с раствором хлорида аммония NН4СL, в который были погружены цинковый стержень (отрицательный электрод) и керамический пористый сосуд, наполненный смесью двуокиси марганца и порошка кокса и имеющий в середине угольный стержень-токоотвод (положительный электрод). Хотя образец по своим параметрам и уступал известным в то время элементам Даниэля и Бунзена, вскоре элементы Лекланше заняли первое место. Простота и безопасность в изготовлении и эксплуатации, широкий интервал рабочих температур и другие преимущества обеспечили интенсивное развитие производства этих элементов. Уже в 1868 г. их было выпущено более 20 тыс. шт.

В ходе дальнейшего усовершенствования элемента цинковый стержень был заменен цинковым стаканчиком, выполнявшим одновременно роль анода и корпуса элемента. Вместо керамического сосуда для удержания активной массы положительного электрода стали использовать тканевый или бумажный патрон. В 1880-х годах было предложено использовать загущенный электролит, и элементы Лекланше стали выпускаться в виде сухих элементов. В первой половине XX в. показатели марганцево-цинковых элементов были заметно улучшены за счет добавления ацетиленовой сажи в активную массу положительного электрода. Примерно в 1935 г. было налажено производство нового конструктивного варианта марганцево-цинковых источников тока — галетных батарей с плоскими элементами.

Существуют близкие аналоги элементов Лекланше — марганцево-цинковые элементы со щелочным электролитом и марганцево-магниевые элементы с солевым электролитом.

2. Электрохимические и другие физико-химические процессы

а) Токообразующие реакции

Активными веществами марганцево-цинковых элементов являются двуокись марганца и цинк. Электролитом служит водный раствор, содержащий хлориды аммония и цинка, а иногда и кальция. Вследствие частичного гидролиза этих солей раствор является слабокислым и имеет рН=5. Так как буферная емкость раствора невелика, рН в приэлектродных слоях раствора в результате электродных реакций изменяется: вблизи катода (двуокиси марганца) он составляет 8—10, а вблизи анода З,5—4.

Механизм электрохимического восстановления МnО2 сложен и является предметом многочисленных исследований. Наиболее вероятно, что реакция протекает по твердофазному механизму путем переноса (диффузии) электронов и протонов с поверхности в глубь зерна МnО2, что приводит к частичному восстановлению ионов Мn4+ кристаллической решетки до ионов Мn3+:

МnО2++е=МnООН.                                       (1)

В начальной стадии по мере такого внедрения водорода кристаллическая решетка МnО2 лишь несколько растягивается, но не меняет своей структуры; в результате образуется гомогенная фаза переменного состава уМnООН(1-y)МnО2. В ходе разряда значение у непрерывно увеличивается и соответственно изменяется потенциал электрода. Существенным является то, что из-за медленности переноса протонов состав поверхностного слоя зерна МnО2 отличается от состава глубинных слоев—вблизи поверхности степень разряженности, т. е. значение у, больше.

Этими особенностями положительного электрода частично объясняются характерные разрядные свойства марганцевых элементов. Из-за непрерывного изменения потенциала положительного электрода напряжение элемента в ходе разряда существенно падает, особенно при больших токах (рис.1). Одновременно падает значение НРЦ. После отключения тока напряжение в первый момент подскакивает до промежуточного значения (исчезновение омического падения напряжения); после этого НРЦ лишь медленно увеличивается до значения, соответствующего данной степени заряженности. Во время такого «отдыха» происходит выравнивание концентрации (значения у) внутри твердой фазы.

Другими причинами падения напряжения при разряде являются постепенный рост внутреннего сопротивления (как омического, так и поляризационного), а также возникновение градиента рН внутри элемента: подщелачивание раствора вблизи катода сдвигает его потенциал в отрицательную сторону.

После достижения определенного критического значения у начинается образование собственной кристаллической структуры МnOОН — манганита — и в системе возникают две твердые фазы (иногда условно говорят, что реакция на этой стадии гетерогенна).

При дальнейшем разряде меняются относительные количества обеих фаз, но не их состав; вследствие этого падение на напряжения замедляется.

В конце разряда, при достаточно отрицательном потенциале электрода (т. е. низком напряжении элемента), возможно дальнейшее

восстановление манганита:

МnООН + Н++е=Мn(ОН)2.       (2)

Этот процесс не приводит к образованию фазы переменного состава, т. е. тоже является гетерогенным) и потенциал элект­рода на этой стадии мало меняется. Практически этот участок разрядной кривой не используется.

Двуокись марганца существует в виде различных кристал­лических модификаций (см. ниже), каждая из которых имеет различные электрохимические показатели – начальный потенциал, характер изменения потенциала в ходе разряда и т. д.

На характер разрядных кривых влияет и установившееся вблизи электрода значение рН раствора. В более кислых растворах, при рН<4,5, МnО2 восстанавливается до иона Мn2+:

МnО2 + 4Н+ + 2е=Мn2+ + 2Н2О.                                  (3)

Так как продукт реакции растворим, состав твердой фазы не меняется и потенциал электрода остается постоянным в ходе всего разряда. К сожалению, в кислых растворах коррозия цинкового электрода велика.

При анодном окислении цинка в солевых растворах первично образуются ионы цинка Zn2+. Однако практически при разряде в элементах протекают разнообразные вторичные химические реакции, в результате которых в электролите, сепараторе и даже в порах положительного электрода образуются мало­растворимые комплексные соединения, содержащие цинк. По мере увеличения вблизи анода концентрации ионов цинка усиливается их гидролиз:

Zn2+2О=Zn(ОН)+ + Н+                                        (4)

вследствие чего рН снижается.

Ионы цинка, диффундируя в зоны с большим рН, выпадают там в виде оксихлоридов ZnСl2*хZn(ОН)2 (обычно x = 4) или гидроокиси Zn(ОН)2. Вблизи положительного электрода в результате подщелачивания раствора ионы аммония частично разлагаются с образованием свободного аммиака (при разряде элементов иногда ощущается запах аммиака). Это способствует образованию кристаллических осадков соединения [Zn(NН3)2]Сl2, которыe частично экранируют активную массу обоих электродов, увеличивают внутреннее сопротивление и градиент рН и уxудшают характеристики элемента. Ионы цинка могут также взаимодействовать с продуктом разряда положительного элек­трода с образованием новой твердой фазы—гетеролита ZnО*Мn2О3.

Таким образом, электродные процессы в марганцево-цинковых элементах отличаются сложностью и их термодинамический анализ затруднен. Лишь в грубом приближении и без учета всех вторичных процессов токообразующая реакция может быть передана уравнением

Zn + 2МnО2 + 2Н2О = Zn (ОН)2 + 2МnООН.       (5)

Часто приводимое уравнение

Zn + 2МnО2 + 2NH4С1 = [Zn (NН3)2] Сl2 + 2МnООН         (6)
тоже не является исчерпывающим, так как реальная емкость элементов может быть больше значения соответствующего по уравнению (6) запасу хлорида аммония.

Напряжение разомкнутой цепи неразряженных свежеизготовленных марганцево-цинковых элементов колеблется от 1,55 до 1,85 В в зависимости от типа используемой двуокиси марганца и состава активной массы. По мере разряда и образования фазы переменного состава НРЦ снижается. В принципе каждому составу фазы соответствует свое термодинамическое значение ЭДС. Но так как даже в пределах одной частички со став поверхностных и глубинных слоев отличается, установление этой связи затруднительно. В области гетерогенных превращений, когда состав фаз не меняется, НРЦ остается практически постоянным. При длительном хранении (например, свыше одного месяца) НРЦ не разряженных элементов постепенно снижается.

 

б) Саморазряд

Оба электрода марганцево-цинковых элементов термодинамически неустойчивы и могут взаимодействовать с водными растворами с выделением соответственно водорода и кислорода.

Хотя в элементах используется избыток цинка и разрядная емкость лимитируется положительным электродом, коррозия цинка приводит к ухудшению характеристик. При коррозии образуются те же первичные и вторичные продукты, как и при разряде. Образование при медленном саморазряде крупнокристаллического осадка [Zn(NНз)2]С12 в диафрагме увеличивает внутреннее сопротивление элемента и уменьшает емкость Коррозия цинка заметно увеличивается при прерывистом разряде, когда сочетаются два фактора: с одной стороны, во время разряда электролит вблизи анода подкисляется, с другой стороны, из-за перерывов общее время эксплуатации увеличивается. Коррозия цинка резко замедляется при его амальгамации. Если элемент недостаточно тщательно загерметизирован, то цинк может также корродировать за счет взаимодействия с атмосферным кислородом.

Скорость самопроизвольного разложения двуокиси марганца с выделением кислорода и образованием некоторого количества МnООН обычно очень мала. Полное разложение МnО2 до МnООН вовсе термодинамически невозможно. Наоборот, МnООН легко взаимодействует с кислородом с образованием смешанной фазы, содержащей большую долю МnО2; это обстоятельство используется в марганцево-воздушно-цинковых элементах.

Вместе с тем возможно взаимодействие МnO2 с загустителями электролита (крахмалом, мукой), в результате которого они частично окисляются, а емкость положительного электрода снижается.

Причиной потери емкости при хранении марганцево-цинковых элементов могут быть также высыхание и отслаивание электролитной пасты, возникновение межэлементных коротких замыканий и другие явления. Высыхание электролита может быть обусловлено не только потерей воды (например, испарением), но и связыванием ее в кристаллогидратах.

в) Течь электролита

В последней фазе разряда марганцево-цинковых элементов или после окончания разряда часто наблюдается течь электролита из элементов; при этом на наружной поверхности образуются солевые налеты. Особенно сильна течь электролита после разряда большими токами или после короткого замыкания элемента.

Причинами течи электролита являются увеличение объема активной массы положительного электрода при разряде, уменьшение пористости и выталкивание электролита из пор активной массы; кроме того, в диафрагме возможны электроосмотические явления, вызывающие течение электролита от катода в сторону цинкового анода. Эти явления сказываются преимущественно при разряде большими токами, когда в диафрагме устанавливается градиент концентрации.

В последние годы было показано, что течь уменьшается при использовании электролита, содержащего только хлорид цинка, но не хлорид аммония. При этом в результате вторичных процессов образуются в основном осадки оксихлоридов цинка, связывающие большое количество воды в виде кристаллогидратов, например ZnС12 - 4ZnО • 5Н2О.

г) Возможность многократного использования

Марганцево-цинковые элементы допускают некоторое количество зарядно-разрядных циклов при условии, что во время разряда используется не более 25 % емкости (т. е. разряд проводится до конечного напряжения не ниже 1,1 В) и что заряд начинается сразу после разряда. Вторичные процессы образования различных осадков после разряда или во время более глубокого разряда сильно затрудняют заряд. Заряд затрудняется также после длительного хранения элемента до разряда. Необходимо иметь в виду, что при циклировании элементов усиливается течь электролита и резко сокращается срок службы. При заряде возможен разрыв элемента. По всем этим причинам заряд марганцево-цинковых элементов используется редко.

3. Конструкция и технология марганцево-цинковых элементов

а) Конструкция элементов и батарей

Существуют два принципиальных варианта конструкции марганцево-цинковых элементов: «стаканчиковые» элементы баночного типа и плоские «галетные» элементы с биполярными электродами.

Стаканчиковые элементы малой и средней емкости имеют цилиндрическую форму, т. е. круглое сечение; элементы большой емкости обычно имеют прямоугольное сечение. Стаканчики из­готавливают большей частью из цинка; они служат одновременно корпусом элемента и отрицательным электродом. Цинковые ста­канчики круглого сечения получают методом глубокой вытяжки (экструзии) из подогретых до 180—200°С заготовок на специ­альных коленно-рычажных прессах; прямоугольные сосуды де­лают из цинкового листа с помощью пайки или сварки.

В средней части цинкового стаканчика 1 (рис.2) нахо­дится так называемый «агломерат» 2 — брикет из спрессован­ной активной массы положительного электрода с впрессован­ным в него угольным стержнем-токоотводом 3. Агломерат имеет круглое или прямоугольное сечение — такое же, как у ста­канчика. Он изолирован от дна стаканчика с помощью изоли­рующей прокладки или чашечки 10. В верхней части элемента имеется свободный объем (газовое пространство 4), образован­ный картонной шайбой 5 и служащий для скопления газооб­разных продуктов саморазряда и разряда — водорода, аммиака. Верхняя часть элемента залита герметизирующей композицией 6. На выступающий конец угольного стержня надет металли-че.ский контактный колпачок 7.

В старых вариантах элементов (рис. 2, а) агломерат обер­нут тонкой тканью — миткалем — и обвязан ниткой; такой аг­ломерат называют «куколка». Зазор 8 между куколкой и цин­ковым стаканом (1—3мм) заполняют жидким электроли­том; после кратковременного нагревания этот жидкий раствор под влиянием загустителя превращается в студнеобразную массу. В настоящее время по этой технологии изготавливают крупные элементы, а иногда также элементы, предназначен­ные для разряда повышенными токами. Вместо обвязки агло­мерата часто используют его обклейку тканью или бумагой.

В цилиндрических элементах новой конструкции (рис.2,б) в цинковый стакан вставлена свернутая в цилиндр бумажная диафрагма 14, покрытая с наружной стороны электролитной пастой. Внутрь цилиндра свободно вставлен необернутый аг­ломерат. После сборки агломерат сверху подпрессовывается и плотно прижимает диафрагму к цинковому стаканчику (так называемая «набивая» технология). В такой конструкции резко уменьшен электролитный зазор (до 0,15—0,2 мм) и увеличено количество двуокиси марганца в элементе заданных габаритов, что приводит к заметному увеличению емкости.

В элементах, не входящих в состав батарей, цинковый кор­пус вставлен в картонный футляр 9 с этикеткой (рис.2, а). В настоящее время в цилиндрических элементах вместо кар­тонного футляра часто используют дополнительный корпус 15 из тонкой стали (рис.2,б). Для изоляции на цинковый стакан надета пластмассовая трубка 16. Крышка 11 и дополнительное донышко 17 удерживаются путем закатки краев корпуса. Про­кладка 12 изолирует корпус от крышки и герметизирует эле­мент. Для образования газовой камеры служит вставка 13. Ос­новные преимущества таких элементов — хорошая герметич­ность, улучшенная сохраняемость и отсутствие течи электролита. По этим причинам они получили широкое распростра­нение, несмотря на сложность конструкции и повышенную стои­мость.

Типоразмеры цилиндрических марганцево-цинковых элемен­тов стандартизованы. Размеры элементов и принятые в разных странах обозначения приведены в табл.1.

Обозначения Номинальные размеры
МЭК СССР США Диаметр, мм Высота, мм
R08 --- O 10.5 3
R06 283 --- 10.5 22
R03 286 AAA 10.5 44.5
R4 314 R 14.5 38
R6 316 AA 14.5 50.5
R8 326 A 16 50.5
R10 332 BR 21.5 37
R12 336 B 21.5 60
R14 343 C 26.2 50
R20 373 D 34.2 61.3
R22 374 E 34.2 75
R25 376 F 34.2 91
R26 --- G 34 105
R27 --- J 34 150
--- 425 --- 40 100
--- 465 --- 51 125

Таблица 1. Унифицированные размеры цилиндрических сухих элементов.

Конструкция галетного элемента показана на рис.3. От­рицательный электрод представляет собой цинковую пластину 1, на одну из сторон которой нанесен электропроводный слой 2. Этот слой состоит из графита и высокомолекулярных связу­ющих материалов, образующих плотную пленку, непроницаемую для электролита. Электропроводный слой, по сути дела, явля­ется перегородкой двух соседних элементов. К цинковому элект­роду прижата диафрагма с электролитной пастой 3 (аналогич­ная диафрагме набивных элементов). Наконец, к диафрагме прижат плоский агломерат 4, имеющий выступ, которым он при сборке батареи прижимается к электропроводному слою соседнего элемента. Агломерат обернут тонкой бумагой 5, предотвращающей выкраши­вание кусочков активной мас­сы и образование межэлемент­ных замыканий. Все детали галетного элемента стянуты в единое целое с помощью коль­ца из поливинилхлорида 6, ко­торое обеспечивает внутренний контакт отдельных деталей и предохраняет от выполза­ния электролита.

Галетные элементы используются практически только в со­ставе батарей. Отдельные элементы стягиваются с помощью бан­дажа в столбы — секции. В галетных батареях объем исполь зован значительно лучше, чем в батареях из цилиндрических стаканчиковых элементов; поэтому и выше удельная энергия. Кроме того, в галетном элементе может быть использовано по­чти в 3 раза меньше цинка на единицу емкости, так как цинк здесь не является конструктивным элементом и может быть растворен «насквозь». В галетных батареях отпадает необхо­димость в межэлементных соединениях и в затрате на это ла­туни и припоя. Поэтому в настоящее время большинство марганцево-цинковых батарей выпускаются в галетной конструкции. Только низковольтные батареи большой емкости или рассчитан­ные на большие токи разряда (например, стандартная «пло­ская» батарея для карманных фонарей) изготавливаются из стаканчиковых элементов.

6) Модификации и разновидности двуокиси марганца

Двуокись марганца образует большое количество кристалло­графических модификаций, обозначаемых буквами греческого алфавита. В природе встречаются α-МnО2 — криптомелан, β-МnО2 — пиролюзит и γ-МnО2— рамсделит. Не­которые модификации содержат посторонние катионы, напри­мер К+, Ва2+ (α- и γ-МnО2) или 4—6% структурной воды (α-, γ-, δ- и т]-МпО2). Стехиометрический состав выражается форму­лой МnОn где п колеблется от 1,9 до 2.

В элементах используются четыре разновидности двуокиси марганца. Природная руда. Наибольшее значение имеют месторождения пиролюзита. Обогащенная пиролюзитная руда содержит 85— 90 % β-МnО2 и является наиболее дешевым, но относительно малоактивным электродным материалом. Она почти не подвер­жена самопроизвольному разложению и обеспечивает хорошую сохраняемость элементов.

Активированный пиролюзит (ГАП) получают прокалива­нием пиролюзита, в ходе которого на поверхности зерен МnО2 частично разлагается с образованием Мn3О4. При последующей обработке серной кислотой растворяются низшие окислы мар­ганца и примеси и образуется высокопористая γ-МnО2. ГАП имеет более положительный (примерно на 0,15—0,2 В) началь­ный потенциал и более высокий коэффициент использования, чем исходный пиролюзит.

Электролитическую двуокись марганца (ЭДМ) получают анодным осаждением из растворов сульфата марганца на гра­фитовых анодах. Она состоит из γ-МпО2 и отличается высокой степенью чистоты и высокой активностью. Из-за этого, а также из-за возможности использования в качестве исходного сырья бедных марганцевых руд ЭДМ находит все более широкое при­менение в элементной промышленности.

Искусственную двуокись марганца (ИДМ) получают хими­ческим путем. В зависимости от способа приготовления обра­зуются продукты с разными свойствами. Большое значение имеет сильно гидратированная ИДМ, получаемая термическим разложением перманганатов. Она представляет собой η-МnО2 и имеет довольно стабильный разрядный потенциал.

Удельная проводимость порошков МnО2, измеренная при давлении 100 МПа, колеблется для разных сортов от 0,1 до 5 См/м. Для повышения удельной электрической проводимости в активную массу добавляют природные чешуйчатые сорта гра­фита («элементный графит») и (или) ацетиленовую сажу. Сажа играет также очень важную роль, повышая влагоемкость актив­ной массы и удерживая запас электролита вблизи всех частиц электрода. Использование других сортов сажи или искусствен­ного графита не дает нужных результатов. Содержание углеро­дистых добавок колеблется от 8 до 20 %. В элементы, предназ­наченные для разряда большими токами, вводят до 20 % гра­фита. В элементы, рассчитанные на малые токи и на длительное хранение, вводят минимальное количество добавок.

в) Отрицательный электрод

В марганцево-цинковых элементах используется цинк с чистотой не менее 99,94 %, обладающий относительно высокой коррозионной стойкостью. Допускаются примеси, на которых скорость выделения водорода низка, например кадмия или свинца. Иногда используются специальные присадки свинца, которые улучшают структуру цинка и облегчают вытяжку ста­канчиков.

 

г) Электролит

Основными компонентами электролита являются хлориды аммония (нашатырь) и цинка, а также загустители — мука или крахмал. Оба хлорида участвуют во вторичных реакциях и тем самым во многом определяют характер процесса разряда элемен­тов. Повышение содержания NН4С1 в электролите увеличивает удельную электрическую проводимость, но одновременно сни­жается рН раствора, что ускоряет коррозию цинка. Поэтому сохраняемость элементов с повышенным содержанием NН4С1 ниже. ZnС12 сильно влияет на тиксотропные свойства электро­литов, загущенных мукой или крахмалом — в присутствии ZnСl2 электролит загустевает гораздо быстрее. Кроме того, растворы ZnС12 обладают антигнилостными и частично буферными свой­ствами. В присутствии ZnС12 уменьшается тенденция растворов к «выползанию» и к образованию солевых налетов.

В электролит элементов, предназначенных для работы при низ­ких температурах, часто добавляют хлорид кальция, который снижает температуру замерзания раствора. В некоторых слу­чаях для этой же цели вводится хлорид лития.

Так как отдельные компоненты электролита по-разному влияют на положительный и отрицательный электроды, то для пропитки агломератов и диафрагм обычно применяют разные рецептуры. В частности, в электролиты для пастовых диафрагм, соприкасающихся с цинковым электродом, с целью снижения са­моразряда вводят от 5 до 15 г/л хлорида ртути (II) (сулемы). Ртуть контактно осаждается на поверхности цинка и амальга­мирует ее. С той же целью в электролит иногда добавляют не­большие количества бихромата калия, служащего ингибитором коррозии цинка. В некоторые электролиты добавляют дуби­тели— хромовые квасцы или сульфат хрома, предотвращающие разжижение загущенного электролита при повышенной температуре.

д)  Марганцево-цинковые элементы со стабильным напряжением

В 1960-х годах были получены модификации ИДМ, позволившие создать положительный электрод со стабильным напря­жением разряда. Эти модификации (η-МпО2) имеют в своей структуре достаточно большое количество конституционной воды, т. е. часть атомов кислорода в решетке замещена гидроксильными группами. Эти формы двуокиси марганца имеют хо­рошие ионообменные свойства: часть протонов в кристалличес­кой решетке может замещаться на ионы цинка. Вероятно, раз­ряд положительного электрода с гидратированной двуокисью марганца первично протекает по уравнению (3). В самом на­чале разряда происходит незначительное увеличение рН и на­пряжение несколько снижается. Вскоре начинается вторичная реакция, связанная с внедрением ионов цинка в двуокись мар­ганца и образованием новой фазы — гетеролита:

MnO2+Mn2++Zn2++2H2O=ZnO*Mn2O3+4H+    (7)

В результате этой реакции подщелачивание раствора при­останавливается. Образующийся гетеролит не изоморфен с дву­окисью марганца и не образует с ней фазы переменного со­става. По этой причине потенциал положительного электрода не зависит от степени разряженности. Суммарная реакция в элементе, включающая две стадии (3) и (7), описыва­ется простым уравнением

Zn+2МnО2 = ZnО*Mn2О3 .                                             (8)

В ходе этой реакции состав электролита не меняется. На рис.4 приведена разрядная кривая элемента с гид­ратированной двуокисью марганца по сравнению с кривыми для обычных элементов. После начального снижения напряже­ния из-за подщелачивания электролита напряжение опять воз­растает в результате увеличения числа центров кристаллиза­ции гетеролита. В ходе дальнейшего разряда напряжение сни­жается очень медленно. Как видно, гидратированная форма приводит не только к улучшению формы разрядной кривой, но и к увеличению емкости. Достигается почти полное использо­вание первой стадии восстановления двуокиси марганца (до трехвалентной формы). Однако из-за замедленности стадии (7) такая картина наблюдается только при разряде очень малыми плотностями тока; при увеличении разрядного тока начинается параллельный процесс с образованием фазы пере­менного состава, приводящий к сдвигу потенциала. Элементы с гидратированной двуокисью марганца могут использоваться, в частности, для питания наручных электрических часов.

е) Марганцево-воздушно-цинковые элементы

Образующаяся при разряде двуокиси марганца гидроокись трехвалентного марганца МnООН может в принципе вновь ча­стично окисляться кислородом воздуха до смешанной фазы, богатой МnО2. Поэтому свободный доступ воздуха к активной массе положительного электрода увеличивает емкость элемента. Кроме того, применяемые в агломератах углеродные материалы — сажа и графит — способны адсорбировать кислород и в какой-то мере работать как кислородные электроды. По­этому довольно широкое распространение получили смешанные марганцево-воздушно-цинковые элементы, в которых катодный процесс сводится одновременно к восстановлению двуокиси марганца и кислорода воздуха. В таких элементах в состав агломератов вводят повышенное содержание углеродных до­бавок, а сажу часто заменяют активированным углем, имею­щим очень развитую поверхность и хорошо адсорбирующим кислород. Примером такой рецептуры может быть следующая: 35—40 % двуокиси марганца, 45 % графита, 15—20 % активи­рованного угля.

В конструкции марганцево-воздушно-цинковых элементов предусматриваются специальные каналы для лучшей подачи воздуха ко всему агломерату. До начала разряда эти каналы остаются заклеенными бумагой, которую следует разрывать при включении элементов на разряд. При разряде малыми то­ками такие элементы работают преимущественно как воздуш­ные; при средних и больших токах в основном восстанавлива­ется двуокись марганца.

В варианте марганцево-воздушно-цинковых элементов вы­пускаются отдельные виды элементов и батарей для фонарей и радиоаппаратуры. В определенных режимах разряда они имеют удельную емкость, примерно вдвое превышающую удельную емкость обычных марганцево-цинковых элементов.

4. Характеристики марганцево-цинковых элементов

Разрядные характеристики марганцево-цинковых элементов зависят от состава активной массы положительного электрода и состава электролита. Типичные разрядные кривые стаканчикового элемента 373 (торговое название «Марс» или «Сатурн») при непрерывном разряде приведены на рис.5. Начальное напряжение при малых токах разряда составляет 1,6—1,65, а при больших 1,2—1,3 В. В зависимости от особенностей пи­таемой аппаратуры и от значения тока разряд ведется до ко­нечного напряжения 0,7—1,0 В.

Для марганцево-цинковых элементов характерна сильная зависимость разрядной емкости от тока; уже начиная с jр = = 0,002 емкость заметно уменьшается с ростом тока. Поэтому для этих элементов редко пользуются понятиями «номиналь­ной емкости» или «номинального тока разряда». Характери­стики каждого типа элемента оговариваются и проверяются обычно в каком-то заданном, несколько случайном режиме, связанном с одной из областей применения. Часто задается не значение тока разряда, а значение внешнего сопротивления нагрузки Rв.ц.

Как видно из рис.6 при прерывистом разряде средними и большими токами емкость марганцево-цинковых элементов увеличивается по сравнению с емкостью при непрерывном раз­ряде данным током. Если перерывы достаточно продолжи­тельны, то увеличение емкости значительно. Поэтому эти эле­менты чаще применяют в аппаратуре, работающей периодиче­ски: карманных фонарях, транзисторных приемниках, игруш­ках и т. д. Однако при прерывистом разряде малыми токами (jр<0,002) емкость заметно снижается из-за влияния самораз­ряда, вызванного коррозией цинка (нормированный ток jр везде отнесен к емкости элемента при малом разрядном токе).

Удельная энергия при непрерывном разряде небольшими токами (jр=0,002) или прерывистом разряде средними токами достигает 45—60 Вт-ч/кг, или 100—130 кВт-ч/м3. При непре­рывном разряде большими токами (jр = 0,05-0,1) удельная энергия падает до 10 Вт-ч/кг. Марганцево-воздушно-цинковые элементы имеют более низкое начальное напряжение—1,30— 1,35 В. В случае разряда при jр = 0,001-0,002 их удельнаяэнергия составляет 80— 100 Вт-ч/кгД

Разрядные кривые элемента 373 при низких температурах представ­лены на рис.7. Как видно, даже при небольшом токе (jр = 0,002) емкость заметно уменьшается уже при температуре О °С; при температуре —40 °С она составляет только 20 % емкости при комнатной температуре. При больших токах пределом работоспособности считается температура —20 °С. При температурах ниже —20 °С обычно применяемые электролиты замерзают, поэтому в них вводят добавки, снижающие температуру замерзания. Так как эти добавки сказываются на показателях при повышенных температурах, иногда используют разные рецептуры для элемен­тов, работающих в разных температурных интервалах: хладо­стойких (от —40 до 40°С) и летних (от —20 до 60 °С).

Из-за увеличения наклона кривых напряжение – емкость по мере уве­ли­че­ния тока (рис.5) понятие эффективного внутреннего соп­ро­тив­ле­ния эле­мен­тов не является вполне оп­ре­деленным. Ориен­тировоч­но можно сказать, что нор­ми­ро­ван­ное внутреннее соп­ро­тив­ле­ние (опять отнесен­ное к ем­кос­ти при малых токах) в начале разряда при комнатной тем­пе­ратуре равно 5—10 Ом*А*ч, а при температуре 0°С увели­чивается в 2—2,5 раза. Такие значения велики по срав­не­нию со значениями для других типов ХИТ.

Номинальные характеристики марганцево-цинковых элементов от­но­ся­тся к свежеизготовленным элементам, т. е. к элементам, хранившимся с мо­мен­та изготовления не больше месяца. Сохраняемость марганцево-цинковых элементов и батарей колеблется в зависимости от размера, кон­струк­тивного вари­анта и рецептур активной массы и электролита от 3 мес до 3 лет. Во время хранения протекают процессы старения и са­мо­раз­ряда, вследствие которых емкость и напряжение разряда снижаются, а внутреннее сопротивление увеличивается. К концу гарантированного срока хранения снижение емкости составляет 30—40 %. Большое значение для сохраняемости имеет тщательность герметизации, которая уменьшает испарение воды и поступление кислорода воздуха к цин­ковому элек­тро­ду. Очень надежными в этом отно­шении являются цилин­дрические элементы в стальном корпусе.

Процессы саморазряда и старения сильно зависят от темпе­ратуры. Два-три месяца хранения в тропических условиях (на­пример, при 45 °С) счи­таются эквивалентными одному году хранения в нормальных тем­пературных условиях (20—25 °С). При низких температурах (например, при -20°С) элементы и батареи могут длительно храниться без существенного сниже­ния показателей.

С СОЛЕВЫМ ЭЛЕКТРОЛИТОМ 1. Общие сведения Уже более 100 лет первичные марганцево-цинковые элементы с солевым электролитом (элементы Лекланше) и батареи из них являются основным типом первичных химических источников тока. В настоящее время во

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru