курсовые,контрольные,дипломы,рефераты
Кафедра общей и прикладной геофизики
Курсовая работа
по сейсморазведке
на тему:
Моделирование SH-волны
Выполнили: студенты группы 3151
Кузнецова А.О., Колбенко А.В., Климов Ю.С.
Проверил: доц. Сердобольский Л.А.
Дубна, 2005
Содержание
Введение
I. Теоретическая часть
1. Описание волн и создаваемых ими на границе напряжений
2. Граничные условия и спектральные коэффициенты рассеивания
3. Волны рассеивания при падении SH-волны на кровлю низкоскоростной среды
4. Волны рассеивания при падении SH-волны на кровлю высокоскоростной среды
II. Расчётная часть
1. Падение SH-волны на кровлю низкоскоростной среды
2. Падение SH-волны на кровлю высокоскоростной среды
Список литературы
Сейсморазведка является одним из важнейших видов геофизической разведки земных недр. Она включает в себя комплекс методов исследований геологического строения земной коры, основанных на изучении особенностей распространения в ней искусственно возбуждённых упругих волн. Вызванные взрывом или другим способом упругие волны, распространяясь во всех направлениях от источника колебания, проникают в толщу земной коры на большие глубины. В процессе распространения в земной коре упругие волны претерпевают процессы отражения и преломления. Это приводит к тому, что часть сейсмической энергии возвращается к поверхности Земли, где вызывает дополнительные сравнительно слабые колебания. Эти колебания регистрируются специальной аппаратурой. Полученные записи подвергаются глубокой обработке. Анализируя и интерпретируя полученные после обработки результаты, квалифицированный специалист-геофизик может определить глубину залегания, форму и свойства тех слоёв, на поверхности которых произошло отражение или преломление упругих волн.
Упругие волны делятся на объёмные и поверхностные. Традиционно в сейсморазведке наибольшее применение нашли объёмные волны: продольные (P-волны) и поперечные (S-волны). Скорости Vp всегда больше, чем Vs.
В данной курсовой работе рассматривается распространение SH-волны в различных геологических условиях среды.
Пусть верхняя среда имеет скорость поперечной волны , плотность и модуль сдвига , а нижняя среда характеризуется параметрами . Напомним, что , и для сокращения письма опустим индекс поперечной волны (S) и будем обозначать , не забывая, конечно, о том, что в этом разделе речь идет о поперечной горизонтально-поляризованной волне, падающей на плоскую, горизонтальную, разрывно-резкую границу раздела.
Пусть первичная плоская SH-волна падает на границу (z = 0) под углом α и имеет фронт, параллельный оси Oy. Она описывается вектором смещения , также ориентированным вдоль Оу, но не зависящим от у:
.
Как отмечалось, SH-волна в выбранных условиях порождает на границе только монотипные (также SH) вторичные волны. Отраженная SH-волна распространяется вверх, в противоположном по отношению к первичной волне направлении. Поэтому в ее волновом аргументе переменная z отрицательна:
Проходящая SH-волна распространяется в том же направлении, что и падающая волна (вниз), но во второй нижней среде со скоростью и под углом :
.
Закон Снеллиуса для SH-волн имеет вид:
Горизонтальное вдоль Оу смещение SH-волн создает на границе лишь касательное напряжение:
в соответствии с законом Гука, где - сдвиговая деформация в плоскости zOy:
.
Но SH-волна несет смещение, ориентированное вдоль Оу, и для нее .Кроме того, фронты всех волн параллельны той же оси Оу, и поэтому .
Следовательно, для касательного напряжения можно записать:
Напряжение, создаваемое на границе падающей волной, описывается так:
Отраженная волна создает на границе касательное напряжение:
Наконец, проходящая волна создает напряжение:
Поскольку , для унификации обозначений будем всегда использовать угол .
Из общих трех граничных условий для компонент векторов смещения и стольких же граничных условий для компонент напряжений в условиях рассматриваемой в данном разделе задачи актуальны лишь два граничных условия: равенство суммарных у-компонент смещений (кинематическое) и равенство суммарных касательных напряжений (динамическое).
На границе, при z = 0, сумма смещений падающей и отраженной волн должна быть равна смещению проходящей волны:
При подстановке z=0 волновые аргументы всех трех волн равны:
то есть , так как t и x - общие время и координата точки границы, а множители при х равны в соответствии с законом Снеллиуса. Поэтому первое граничное условие дает уравнение:
или в спектрах:
.
Обратим внимание на отсутствие в первом уравнении углов падения, отражения и прохождения. Это значит, что уравнение должно быть справедливом при любом угле падения 0 ≤ α ≤ π⁄2.
Динамическое граничное условие требует, чтобы на границе, при z=0, сумма напряжений, создаваемых падающей и отраженной волнами, равнялось напряжению, создаваемому проходящей волной:
.
Используя определения касательных напряжений, получим, подставляя z = 0, второе уравнение:
,
или в спектральной форме после сокращения на jω:
.
Вместе уравнения для смещений и напряжений создают систему из двух уравнений, в которые входят спектры трех волн - отраженной, проходящей и, породившей их, первичной (падающей):
Очевидно, эта система позволяет определить лишь отношения спектров вторичных волн к спектру первичной волны. Так вводятся спектральные коэффициенты рассеяния:
спектральный коэффициент отражения ,
спектральный коэффициент прохождения .
Как в любой линейной системе, чья спектральная характеристика определена отношением спектра сигнала на выходе к спектру входного сигнала, и в данном случае спектры “выходных сигналов” - отраженной волны (“выход 1”) и проходящей волны (“выход 2”) соотносятся со спектром “входного сигнала" - падающей волны. Поделив уравнения на и введя А и В, запишем:
Решая любым способом эту простую систему уравнений, получим определения спектральных коэффициентов рассеивания:
.
Обратим внимание на очень удобную особенность - при любом угле падения коэффициент прохождения В на единицу больше коэффициента отражения А. Произведение скорости на плотность в сейсморазведке называют волновым сопротивлением (или акустической жесткостью): Используя определение спектральных коэффициентов рассеивания, можно записать для спектров вторичных волн:
.
Так как В = 1 + А, то при любом угле падения спектры волн связаны соотношением:
.
В том же соотношении находятся и сами сигналы - первичная и вторичные волны:
.
Видно, что всегда проходящая волна представляет собой сумму волн падающей и отраженной. Заметим, что для SH-волн так и должно быть для соблюдения неизменной сплошности всей среды и неразрывности контакта пород на границе.
При нормальном (по перпендикуляру к границе) падении и коэффициента рассеивания равны:
.
Очевидно, что условием возникновения отраженной волны служит неравенство волновых сопротивлений, контактирующих на границе сред вне зависимости от того, чем это неравенство вызывается - различием скоростей или различием плотностей. Отражающей является граница с различными волновыми сопротивлениями. Могут быть “скоростные" границы, на которых изменяются скорости, могут существовать “плотностные” границы, на которых меняются плотности, и границы обоих типов являются отражающими. Наоборот, граница, на которой и , но , не является отражающей.
В большинстве случаев скорости и плотности пород изменяются согласованно - более плотные породы являются и более всокоскоростными и наоборот. Исключения из этого правила довольно редки. Наиболее яркий пример - граница между залегающими над соляным куполом известняками и каменной солью. Скорость волны в известняках может быть меньше скорости в соли, тогда как плотность соли меньше плотности известняка.
В зависимости от знака неравенства выделяют случаи тогда верхняя среда имеет большее волновое сопротивление, чем нижнее, и обратный случай, когда нижняя среда характеризуется большим волновым сопротивлением: . В геологическом разрезе из-за статического давление вышележащих пород волновое сопротивление обычно растете с увеличением глубины залегания. Уменьшению его на границе обычно соответствуют границы перерыва в осадконакоплении (границы разрыва).
Проведем последовательный анализ поведения коэффициентов рассеивания А и В вторичных волн при изменении угле падения первичной SH-волны: 0≤ α ≤ π⁄2. Угол α = 0 соответствует нормальному падению волны, угол α = π⁄2 является теоретически возможным пределом изменения угла падения, при котором волна скользит вдоль границы.
Верхняя среда более плотная и имеет большую скорость распространения волны, чем нижняя:
.
Из закона Снеллиуса следует, что в том же соотношении находятся углы падения и отражения и угол прохождения :
.
Поэтому при изменении угла падения от 0 до теоретически возможного предела угол прохождения этого предела не достигает: всегда <.
Поэтому коэффициенты рассеивания при любых углах падения являются действительными числами - просто амплитудными множителями, лишь уменьшающими (при А, В < 1) или увеличивающими (при В > 1) амплитуду вторичной волны по сравнению с амплитудой первичной, падающей волны.
Возможно еще одно воздействие коэффициента отражения А на отраженную волну. Если А > 0, то отраженная волна имеет тот же знак (направление) смещения, что и первичная волна. Если же А < 0, то первичная и отраженная волны имеют разные направления смещения (рис.8). Пусть, например, падающая волна имеет направление первого смещения в сторону у > 0.
Рис.8
Тогда при А < 0 первое смещение отраженной волны направлено в сторону у < 0. В физике такое явление называют отражением с потерей полуволны, в сейсморазведке - изменением полярности первого вступления волны. При нормальном падении и при :
.
Например, при км/с, г/cм, км/с, г/см коэффициенты рассеивания имеют значения: A = 0,25, В = 1,25. При нормальном падении отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, а проходящая волна превосходит ее по амплитуде на 25%. Подстановка теоретически возможного предела изменения угла падения дает и А = - 1, а В = 0. Отраженная волна имеет ту же амплитуду, что и волна падающая, но инвертирована (обращена) по знаку смещения в сравнении с ней. Проходящая волна отсутствует, что вполне естественно. Обратим внимание на то, что при изменении угла падения от 0 до коэффициент отражения меняет знак - при α = 0 A > 0, а при α = А<0. Значит, при некотором угле падения коэффициент отражения равен 0 и отраженная волна отсутствует (!). Так как В = 1 + А, то при α = В = 1 и проходящая волна имеет в точности ту же амплитуду, что и первичная волна. Найдем этот угол из условия А = 0:
.
По закону Снеллиуса
.
Поэтому условие А = 0 принимает вид:
.
Отсюда, после преобразований найдем по его синусу:
.
При уменьшении различия физических свойств плотности пород сближаются более быстро, чем скорости. При :
.
В пределе, когда и . Следовательно, в рассматриваемом случае угол падения , при котором А = 0, находится в диапазоне углов падения, больших , удаляясь от этой величины в сторону больших углов по мере увеличения различий физических свойств контактирующих сред (контрастности границы).
Для выбранных ранее в качестве примера параметров сред sin 0,84 и . Значит, в диапазоне углов падения от 0° до 57° коэффициент отражения А положителен, коэффициент прохождения В >1. При А = 0, В = 1, а при α > А < 0, В < 1. При углах, меньших , отраженный сигнал имеет тот же знак смещения, что и первичная волна, при угле падения, равном , отраженная волна отсутствует, а при углах, больших , она подобна первичной волне с инвертированным знаком смещения.
Для выбранных параметров разреза на рис.9 приведен единый график А (α) и В (α) = 1 + А (α), снабженный двумя шкалами оси ординат со смещенными на единицу нулями. В нижней части рисунка изображены схематические импульсоиды падающей волны u (t) и вторичных волн - отраженной и проходящей для различных углов падения.
Как видно из рисунка, при малых углах падения изменения спектральных коэффициентов А и В незначительны. Соответственно, малы и изменения амплитуды вторичных волн. Это является благоприятным фактором для сейсмической разведки.
Рис.9
С приближением угла падения к спад кривой ускоряется, отраженная волна затухает до нуля при , а амплитуда проходящей волны стремится к амплитуде волны падающей.
При углах, больших , происходит стремительное падение кривой к пределам: А (α → 90°) → -1; B (α → 90°) → 0. Отраженная волна, поменяв знак смещения на обратный при , стремится к падающей волне с инвертированным знаком смещения. Проходящая волна столь же быстро затухает до нуля.
Нижняя среда - более плотная и имеет большую скорость распространения волны, чем верхняя:.
и .
В соответствии с законом Снеллиуса, угол прохождения всегда больше угла падения и равному ему угла отражения: . При изменении угле падения от нуля до теоретически возможного предела 90° угол прохождения растет быстрее и становится равным 90° при . В этом случае
и ,
где - критический угол падения. При таком падении проходящая волна не уходит в глубь нижней среды, а скользит вдоль границы со скоростью .Эта скользящая волна порождает в верхней низкоскоростной среде вторичную волну, называемую в сейсморазведке головной или преломленной. На регистрации таких волн основан второй метод сейсморазведки - метод преломленных волн (МПВ), - первым и основным, но вторым по времени возникновения, является метод отраженных волн (МОВ).
При нормальном падении все косинусы равны единице, коэффициент отражения отрицателен, а коэффициент прохождения меньше единицы. Следовательно, в этом случае отраженная волна противоположна падающей по знаку смещений (отражение с потерей полуволны), а проходящая волна имеет меньшую амплитуду, чем волна падающая:
при α = 0 и A < 0 и B < 1 и = B · u (τ) < u (τ).
При критическом угле падения угол прохождения и А = 1, В = 1 + А = 2. Отраженная волна имеет ту же амплитуду, что и волна падающая, а проходящая волна по амплитуде вдвое превосходит ее:
при А = 1 и В = 2 и .
Видно, что и при коэффициент отражения меняет свой знак: при нормальном падении А < 0, а при А = 1 > 0, и существует угол , при котором А = 0 и , В = 1 и , - отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для удобнее записать, умножив числитель и знаменатель подкоренного выражения на - 1:
.
При дальнейшем увеличении угла падения, когда , коэффициент отражения А стремительно возрастает от 0 при до 1, при одновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн - отраженной и проходящей - происходят, когда угол падения становится больше критического. Если (напомним, ), в соответствии с законом Снеллиуса:
и
синус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:
, так как .
Синусу, большему 1, соответствует чисто мнимый косинус.
Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит ) и ее спектра:
Подставим в последнее определение
:
Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель . Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты ω неограниченно возрастает:
при z → ∞ .
Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус: . Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z → ∞).
Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: - ∞ ≤ ω ≤ ∞ и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с ω < 0. Знак минус в определении “правильно действует" только для положительных частот. Для отрицательных частот знак минус гаснет и амплитуда гармоники частоты ω < 0 неограниченно возрастает по мере удаления от границы z → ∞. Это - снова нереально.
Чтобы обеспечить затухание всего спектра волны как для положительных, так и для отрицательных частот, определим:
,
где sgn (ω) - знаковая функция частоты:
.
В таком определении амплитудный множитель обеспечивает затухание гармонических составляющих со всеми частотами: если ω > 0, sgn (ω) = + 1 и - функция, убывающая с ростом z, если же ω < 0, sgn (ω) = - 1 и - так же убывающая по мере удаления от границы функция.
Обратим внимание на то, что с ростом абсолютного значения частоты ω затухание ускоряется - чем выше частота гармоники, тем быстрее она затухает с ростом z.
В функции запаздывания спектра проходящей волны осталась лишь пространственная переменная x: . Эта функция соответствует скольжению плоской волны вдоль границы со скоростью , меньшей истинной скорости волны в нижней среде, так как . Эта скользящая с “неправильной" скоростью волна имеет амплитуду, экспоненциально уменьшающуюся с глубиной, вдоль фронта волны. Эти две особенности закритической проходящей волны дают основание для ее специального наименования - она называется неоднородной плоской волной, в соответствии с характером распределения ее амплитуды по фронту.
Неоднородные плоские волны играют главенствующую роль в образовании преломленной (головной) волны, которую рассмотрим несколько позже в отдельном разделе. Здесь подчеркнем одно - все особенности неоднородной волны выявлены в результате анализа лишь волнового аргумента проходящей волны при закритическом падении плоской волны на границу раздела. Вид самой волновой функции этим анализом не затронут. Поэтому вернемся к исследованию поведения спектральных коэффициентов рассеивания и вторичных волн при закритическом падении первичной волны.
Итак, установлено, что при
где
.
Коэффициенты рассеивания А и В в этом случае описываются выражениями:
Знаком тождества подчеркнута комплексная зависимость коэффициентов рассеивания от частоты, оправдывающая введенное ранее определение А и В как спектральных коэффициентов рассеивания.
В числителе и знаменателе дроби, определяющей А - комплексно-сопряженные выражения: , имеющие одинаковый модуль (так как ) и противоположные по знаку аргументы. Поэтому модуль спектрального коэффициента выражения равен 1:
и не зависит ни от частоты, ни от угла падения. Фазово-частотный коэффициент отражения как аргумент дроби с комплексно-сопряженными числителем и знаменателем, равен:
.
Действительная realA и мнимая imageA части спектрального коэффициента отражения (СКО) равны:
,
где
.
Используя формулы косинуса и синуса двойного угла (), получим выражения для действительной и мнимой частей СКО в виде:
;
.
Действительная часть СКО не зависит от частоты, а зависимость мнимой части от нее задается множителем в виде знаковой функции частоты. Обе части СКО являются функциями угла падения. Спектральная характеристика отражения обладает всеми свойствами устойчивой линейной системы - четными амплитудно-частотной характеристикой (модулем СКО) и действительной части СКО, и нечетными фазово-частотной характеристикой (аргументом СКО) и мнимой частью СКО. При этом, четность обеспечивается отсутствием зависимости и realA от частоты, а нечетность и imageA - множителем в виде знаковой функции sgn (ω). Таким образом, комплексный спектральный коэффициент отражения может быть записан в виде:
.
Спектр отраженной волны разделяется на два слагаемых:
.
В первом слагаемом присутствует спектр первичной волны с амплитудным множителем (весом) ReA (α), независимым от частоты и меняющимся с увеличением угла падения.
Во втором слагаемом - произведение двух частотно-зависимых функций - знаковой и комплексного спектра первичной волны u (jf) - с амплитудным множителем ImA (α), также изменяющимся с увеличением угла падения.
Так как преобразование Фурье - линейная операция, сам отраженный сигнал также является взвешенной суммой Фурье-трансформант слагаемых своего спектра:
.
Здесь - результат обратного Фурье-преобразования знаковой функции частоты sgn (f), u (t) u (jf), а произведение спектров заменено сверткой Фурье-трансформант сомножителей в соответствии со спектральной теоремой свертывания функций.
В теории спектров рассматривалась знаковая функция времени sgn (t) и ее спектр:
.
Аналогично определяется обратное Фурье-преобразование знаковой функции частоты:
.
Здесь появился знак минус как следствие противоположных знаков ядер прямого () и обратного () преобразований Фурье.
Тогда отраженный сигнал может быть описан выражением:
.
Сокращая мнимую единицу и раскрывая символьную запись свертки, получим описание отраженного сигнала при углах падения, превышающих критический угол:
.
В скобках записано обратное Гильберт-преобразование функции u (t), описывающей первичную волну:
.
Таким образом, отраженный сигнал за критическим углом падения представляется взвешенной суммой падающего сигнала u (t) и его Гильберт-трансформанты :
.
Веса слагаемых - ReA (α) и ImA (α) - изменяются при увеличении угла падения. Соответственно, изменяется по форме и суммарный отраженный сигнал .
Проведем анализ зависимости от угла падения α весовых множителей ReA (α) и ImA (α) и структуры суммарной отраженной волны при изменении α от критического угла до теоретически возможного предела 90°. Как отмечалось, при α = А () = 1 = ReA (), ImA () = 0. Отраженная волна имеет те ж форму и амплитуду, что и падающая волна: = .
Как только угол падения превысит критический угол, ReA (α) стремительно уменьшается, а мнимая часть ImA (α) столь же быстро возрастает. Доля первичного сигнала в суммарной отраженной волне быстро уменьшается, и так же быстро растет доля Гильберт-трансформанты падающей волны. При некотором угле падения действительная часть спадает до 0, а мнимая - возрастает до 1:
при α = ReA () = 0; ImA () = 1.
Отраженный сигнал представлен только Гильберт-трансформантой первичной волны: . Угол находится из условия ReA () = 0:
.
Синус его равен:
и не намного превышает , то есть не намного больше .
Дальнейшее увеличение угла падения (α > ) приводит к перемене знака действительной части и к соответствующему инвертированию знака смещения первичной волны в суммарном отраженном сигнале.
В пределе, при : ReA; ImA и .
С увеличением угла падения при доля падающей волны с инвертированным знаком смещения в суммарной волне растет, а доля Гильберт-трансформанты уменьшается в пределе, при α = 90°, до 0.
При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае (см. раздел 8.3), что вполне естественно.
Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн фактически не нужен, так как имеется связь между коэффициентами рассеивания SH-волны: В = 1 + А, справедливая при любых углах падения.
Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:
ReB + jImB = 1 + ReA + jImA.
Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:
ReB = 1 + ReA; ImB = ImA.
Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):
.
В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна представляет собой простую сумму падающей волны u (τ) и отраженной волны .
Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны.
Вне зависимости от угла падения в этой волне всегда присутствует “постоянная" составляющая - первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.
В заключение приведем цифровые оценки особых углов падения для границы раздела сред со следующими упругими параметрами:
.
Это - довольно “сильная” отражающая граница.
Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.
При нормальном падении (α = 0) SH-волны коэффициенты рассеивания равны:
.
Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений ≈1,667 и скоростей ≈1,414 (≈0,707). Используя их, найдем особые углы падения первичной волны:
угол , при котором А = 0, В = 1 и = 0,
= arcsin ≈38°,7;
критический угол , при котором А = 1, В = 2 и
:
.
угол , при котором ReA = 0, ImA = ImB = ReB = 1 и
, :
≈49°,4.
Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка: ≈10,7. В интервале коэффициенты А и В возрастают на единицу: А от 0 до 1, В от 1 до 2. Затем, как только угол падения превысит критический, коэффициенты становятся комплексными. В интервале действительная часть А спадает от 1 до 0 (ReB от 2 до 1), а мнимая часть А и В возрастает от 0 до 1.
Вне зоны () коэффициенты рассеивания ведут себя более спокойно. При изменении от 0 до отрицательный коэффициент отражения уменьшается (по модулю) от - 0,25 до 0. В ближней к источнику зоне, при , СКР изменяются незначительно. Соответственно, и вторичные волны в этой зоне изменяются мало.
С увеличением различия свойств контактирующих на границе сред все особые точки () смещаются в сторону меньших углов падения, а интервалы между ними уменьшаются. Наоборот, для границ раздела сред с близкими упругими константами критический угол большой и углы отдалены от него.
Рис.10
Описание изменений СКР SH-волны иллюстрирует (рис.10), на котором построены графики и импульсоиды первичной волны и ее Гильберт-трансформанты, а также импульсоиды суммарных вторичных волн для различных углов падения. Так как ReB = ReA + 1, график снабжен второй осью ординат для со смещенной на 1 шкалой. График одновременно является и графиком .
Импульсоиды вторичных волн соответствуют углам падения, отмеченным на шкале оси абсцисс стрелками.
В заключение анализа отметим, что угол падения α определяет удаление х точки приема Р от точки возбуждения 0 (рис.11). Тангенс этого угла равен отношению половины удаления х/2 к эхо-глубине границы h: . Поэтому малые углы падения соответствуют ближней к источнику зоне, а большие - дальней.
Рис.11
Приведем оценки x/h, соответствующие особым углам для выбранных ранее параметров сред:
при ≈38°,7 ≈1,6;
при ;
при ≈49,4 ≈2,33.
Добавим еще оценку границы ближней зоны:
при ≈12,8 ≈0,46.
Таким образом, область наибольшей стабильности отраженной волны не превышает половины эхо-глубины границы. Наибольшие изменения этой волны начинаются на удалениях, в полтора раза превышающих глубину. В промежуточной зоне с ростом х изменения отраженной волны становятся все более существенными и заметными.
Зададим три случая параметров среды - укажем их в таблице:
Среда 1 | Среда 2 | Среда 3 | |||
V1, км/с |
1,3 |
V1, км/с |
2,0 |
V1, км/с |
2,5 |
ρ1, г/см3 |
2,2 |
ρ1, г/см3 |
3,0 |
ρ1, г/см3 |
3,5 |
V2, км/с |
1,2 |
V2, км/с |
1,2 |
V2, км/с |
1,2 |
ρ2, г/см3 |
2,1 |
ρ2, г/см3 |
2,1 |
ρ2, г/см3 |
2,1 |
Получим график спектрального коэффициента отражения A в зависимости от угла падения α1. В первом случае критический угол составляет α0 = 55˚, во втором - близок к α0 = 70˚, третий случай - α0 = 75˚.
Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол α0 увеличивается, стремясь к 45˚ для практически однородных сред.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемый по формуле . Возьмём случай f0 = 40Гц:
Зададим три случая параметров среды - укажем их в таблице:
Среда 1 | Среда 2 | Среда 3 | |||
V1, км/с |
1,2 |
V1, км/с |
1,2 |
V1, км/с |
1,2 |
ρ1, г/см3 |
2,1 |
ρ1, г/см3 |
2,1 |
ρ1, г/см3 |
2,1 |
V2, км/с |
1,3 |
V2, км/с |
2,0 |
V2, км/с |
2,5 |
ρ2, г/см3 |
2,2 |
ρ2, г/см3 |
3,0 |
ρ2, г/см3 |
3,5 |
Получим график спектрального коэффициента отражения A в зависимости от угла падения α1. В первом случае критический угол составляет α0 = 68˚, во втором - близок к α0 = 38˚, третий случай - α0 = 28˚.
Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол α0 уменьшается.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемого по формуле . Возьмём случай f0 = 40Гц:
1. Бондарев В.И., 2000, Основы сейсморазведки. Екатеринбург: Изд-во УГГГА.
2. Сейсморазведка: Справочник геофизика, 1990 / Под ред. В.П. Номоконова. М.: Недра.
3. Гурвич И.И., Боганик Г.Н., 1980, Сейсморазведка. М.: Недра.
Кафедра общей и прикладной геофизики Курсовая работа по сейсморазведке на тему: Моделирование SH-волны Выполнили: студенты группы 3151 Кузнецова А.О., Колбенко А.В., Климов Ю.С. Пр
Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей
Направленное бурение
Оборудование буровой установки
Обработка данных методом преломленных волн
Озера світу
Описание учебной геологической карты № 17
Оползневые процессы в Томской области
Основные закономерности оползневых процессов
Основы геодезических измерений
Осушение строительного котлована
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.