База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Определение поражающих факторов — Военная кафедра

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Донбасская Государственная Машиностроительная Академия

Кафедра КИТ

Контрольная работа

по дисциплине "Гражданская оборона"

Выполнил:

студент группы ИТ – 97 – 1з

Бутенко П. Э.

шифр 97670

вариант №10

Дата защиты работы

Оценка

Подпись преподавателя

Краматорск ДГМА 2002


Задание 1

Понятие очага поражения, важнейшие поражающие факторы.

Ответ

Очагом поражения называется территория с расположенными на ней зданиями, сооружениями, инженерными сетями, коммуникациями, оборудованием, техникой и людьми, подвергшаяся поражению, разрушению или заражению в результате возникновения чрезвычайной ситуации. Различают простые и комплексные (сложные) очаги поражения в зависимости от числа одновременно действующих поражающих факторов. Важнейшие поражающие факторы, возникающие при чрезвычайных ситуациях:

—  упругие волны при землетрясениях;

—  ударная волна при взрыве;

—  пламя пожара и световое излучение;

—  радиоактивное заражение;

—  химическое заражение;

—  затопление;

—  эпидемии.

Упругие волны при землетрясениях — сильные колебания земной коры, вызываемые тектоническими и вулканическими причинами, приводящие к разрушениям зданий, сооружений, к пожарам, человеческим жертвам. Основные характеристики землетрясения — глубина очага, характер разлома земной коры (вертикальный, горизонтальный), магнитуда, интенсивность энергии.

Магнитуда – логарифм максимальной амплитуды смещения почвы в микронах, измеренной по сейсмограмме на расстоянии 100 км от эпицентра. Интенсивность энергии на поверхности земли зависит от глубины очага, магнитуды, расстояния от эпицентра, характера грунта и других факторов. Она измеряется в баллах по шкале Рихтера.

Таблица 1 – Шкала Рихтера.

Баллы Характеристика землетрясений Внешние эффекты
1 Незаметные Люди не ощущают
2 Очень слабые Большинство людей не ощущает
3 Слабые Многие ощущают
4 Умеренные Ощущают все, звенит стекло
5 Довольно сильные Ночью все просыпаются, колышутся люстры
6 Сильные Легкие повреждения зданий, тонкие трещины
7 Очень сильные Трещины в стенах, откол штукатурки
8 Разрушительные Разрушение многих зданий
9 Опустошительные Полные разрушения зданий
10 Уничтожительные Трещины в грунте до 1 метра
11 Катастрофа Много трещин, обвалы в горах
12 Сильная катастрофа Сильные изменения рельефа местности

Землетрясения вызывают и другие стихийные бедствия: оползни, лавины, сели, цунами, наводнения, пожары, утечки СДЯВ и др. Прогнозировать землетрясения практически невозможно, но можно территории разделить по потенциальной опасности (сейсмическое районирование).

Ударная волна при взрыве — зона сжатого воздуха, которая распространяется со сверхзвуковой скоростью от центра взрыва, вызывая поражение людей, разрушение зданий, сооружений, техники и др. Важнейшая количественная характеристика ударной волны — избыточное давление фронта ударной волны ДРф — разность между максимальным давлением во фронте ударной волны и нормальным давлением ( атмосферным давлением.).Единицы измерения – килопаскаль, или килограмм на квадратный сантиметр.

1кПа=1000 Па ~ 0,01кГ/см2,

1кГ/см2 ~ 100 кПа (101325Па).

Действие ударной волны на незащищённого человека:

до 20кПа — без особых последствий (звон в ушах, нарушение ориентации);

20…40кПа — лёгкие поражения (легкая контузия, временная потеря слуха, вывихи, ушибы);

40…60кПа — средние поражения (травмы мозга с потерей сознания, повреждения органов слуха, кровотечение из носа и ушей, переломы и вывихи конечностей);

60…100кПа — тяжёлые и крайне тяжёлые поражения (травмы мозга с продолжительной потерей сознания, множественные переломы, повреждения внутренних органов и т.п.);

более 100кПа — смертельные поражения.

Косвенное воздействие ударной волны заключается в поражении людей предметами, увлекаемыми ударной волной.

Действие ударной волны на здания и сооружения:

10…20кПа — слабые разрушения;

20…30кПа — средние разрушения;

30…50кПа — сильные разрушения;

более 50кПа — полные разрушения.

Характеристика очага поражения при взрыве газовоздушной смеси

Чаще всего в промышленности и на транспорте происходят взрывы нефтепродуктов (сжиженный газ, сжатый газ, бензин, легкокипящие нефтяные фракции и т.д.). Очаг поражения при этом характеризуется возникновением трёх зон (рис.1).


Рисунок 1 – Зоны поражения при взрыве газовоздушной смеси

I – зона действия детонационной волны – находится в пределах облака, т.е. зона, в которой происходит молниеносное горение взорвавшегося углеводорода, на внешней границе этой зоны DРф = 1700 кПа (r1);

II – зона действия продуктов взрыва — охватывает объём пространства, в котором рассеиваются продукты взрыва, на внешней границе этой зоны DРф = 300 кПа (r2);

III – зона действия воздушной ударной волны, условно внешней границей считается радиус r3, для которого DРф = 10 кПа — величина практически безвредная для зданий, сооружений и людей

Радиоактивное заражение возникает при выпадении на местность радиоактивных веществ вследствие ядерного взрыва или аварии на АЭС с выбросом радиоактивных веществ. На радиоактивно зараженной местности источниками радиоактивного излучения являются: осколки (продукты) деления ядерного материала, наведенная радиоактивность в грунте и других материалах, непрореагировавшее ядерное топливо. Радиоактивное излучение ионизирует атомы и молекулы вещества, а при прохождении через живую ткань – молекулы, входящие в состав клеток. Это приводит к нарушениям нормального функционирования живой материи, изменению функций белков, ДНК, клеток, отдельных органов, систем и организма в целом.

Радиоактивное заражение количественно можно охарактеризовать такими параметрами:

Доза — количество энергии ионизирующих излучений, поглощенное единицей массы облучаемой среды (интегральная характеристика). Различают экспозиционную, поглощенную и эквивалентную дозы. Экспозиционная доза (обозначение D) измеряется в рентгенах (внесистемная единица) и радах (системная единица): 1Р = 0,87 рад; 1рад = 1,14Р.

Мощность дозы (уровень радиации) — дифференциальная характеристика. Единицы измерения в системе СИ – рад в час; обозначение Рn , где n — время после взрыва (заражения), в ч.

Мощность дозы со временем падает по экспоненциальному закону:

— для ядерного взрыва – Рt1t –1,2;

—  для аварии на АЭС – Рt=P1t –0,4. .

Зона химического заражения образуется вследствие утечки сильнодействующих ядовитых веществ (СДЯВ) при производственных авариях, катастрофах, применении боевых отравляющих веществ. СДЯВ могут быть участниками технологических процессов – сырьём, полупродуктами (хлор, аммиак, оксиды серы, оксиды азота, сероводород, фосген, синильная кислота, галогенводороды и др.). СДЯВ могут вызывать поражения кожи, дыхательных органов, глаз и др. При производственной аварии с выбросом СДЯВ образуется зараженное облако, которое называется первичным. Его состав, размеры и форма зависят от свойств и количества СДЯВ, метеоусловий и т.д. Вторичное химическое заражение людей может произойти при контакте их с зараженной техникой или местностью.

Зоной химического заражения называется территория, на которой имеется поражающая концентрация СДЯВ.

Очагом химического заражения называется территория, на которой в результате воздействия ядовитых веществ произошли массовые поражения людей, сельскохозяйственных животных или растений.

Зона химического заражения характеризуется размерами (глубиной Г и шириной Ш) и площадью S, которые, в свою очередь, зависят от количества СДЯВ, их природы, метеоусловий, характера местности, плотности застройки, наличия растительности.

Наводнения – это катастрофическое затопление местности, вызывающее повреждения и разрушения зданий, сооружений и других объектов, сопровождающееся поражениями и гибелью людей, другими негативными последствиями. Масштабы наводнения зависят от высоты и продолжительности стояния опасных уровней воды, площади затопления, времени затопления и др.


Задание 2

Определить дозу излучения, которую получат рабочие, если начнут работать через А часов после аварии на АЭС, при уровне радиации на это время Б рад/час (таблица 1). Продолжительность работы Т часов. Условия работы - В. Сделать выводы, а при необходимости внести предложения по изменению условий работы.

 

Таблица 1 – Исходные данные для задания 2.

А, час.

Б, рад/час

Т, час.

В – условия работы

10 3 50 2 На экскаваторах

Решение

Определим время начала и окончания работ:

Вычислим уровень радиации на 1 час после аварии, предварительно найдем в приложении 1 коэффициент перерасчета уровней радиации на любое время после аварии на АЭС К30 = 3,55:

Определим уровень радиации на время окончания работ, предварительно найдем в приложении 1 коэффициент перерасчета уровней радиации на любое время после аварии на АЭС К32 = 3,55:

Далее определим средний уровень радиации:

Определим дозу излучения, предварительно найдем в приложении 2 коэффициент ослабления доз радиации для зданий и транспортных средств КОСЛ. = 4:

Вывод: работать можно, так как доза не превышает допустимую (25 рад за сутки).

 


Задание 3

Определить допустимую продолжительность спасательных работ (СиДНР), если СиДНР начались через Г часов после аварии на атомной электростанции, а уровень радиации на 1 час после аварии на АЭС составил Р1 рад/час. Установленная доза излучения Дуст. Условия работы приведены в таблице 2.

 

Таблица 2 ‑ Исходные данные для задания 3.

Г, час.

Р1, рад/час

Дуст, рад

Условия работы

10 3 72 15

3х-этаж.админ. здание

Решение

Рассчитаем относительную величину А, предварительно найдем в приложении 2 коэффициент ослабления доз радиации для зданий и транспортных средств КОСЛ. = 6:

По таблице приложения 3 определяем допустимую продолжительность работы. (А = 0,8, Г =3 часа). На пересечении строки и колонки читаем допустимую продолжительность работ:

Т = 2 часа 10 минут.


Задание 4

На объекте разрушилась емкость (обвалованная или нет - см. вариант), содержащая Е тонн вещества Ж. Метеоусловия и характер местности указаны в таблице 3. Определить размеры и площадь зоны химического заражения.

 

Таблица 3 ‑ Исходные данные для задания 4.

Е, тонн

Вещество Ж

Емкость

Метеоусловия, скорость ветра

Местность

10 100 аммиак необвалов. ночь, полуясно, 4м/с открытая

Решение

Определим по данным приложения 6 степень вертикальной устойчивости воздуха, при данных метеоусловиях это изотермия.

По таблице приложения 4 определяем глубину распространения зараженного воздуха (по условию задачи местность открытая):

С учетом поправочного коэффициента на скорость ветра (примечание 1 приложения 5) и необвалованной емкости (примечание 2 приложения 5) глубина распространенного воздуха равна:

Определяем ширину зоны химического заражения, учитывая, что степень вертикальной устойчивости воздуха это изотермия:

Определяем площадь зоны химического заражения:


Задание 5

Определить избыточное давление фронта ударной волны и характер разрушения объекта на случай взрыва Q тонн сжиженного пропана на расстоянии К метров от объекта.

 

Таблица 4 ‑ Исходные данные для задания 5.

Q, тонн

К, метров

Структура объекта

10 116 575 Кирпичное бескаркасное производственно-вспомогательное здание с перекрытием из железобетонных плит, одноэтажное

Решение

1  Радиус действия детонационной волны:

2  Радиус действия продуктов взрыва:

3  Сравнивая полученные значения радиусов с расстоянием от центра взрыва (575 метров), видим, что объект не попадает ни в зону действия детонационной волны, ни в зону действия продуктов взрыва, он находится в зоне действия воздушной ударной волны.

4  Вспомогательная величина ц:

5  Ожидаемое значение избыточного давления фронта ударной волны:

Поскольку ц £ 2, то применяем формулу (1):

6  В таблице приложения 7 для данного здания находим, что здание получит средние разрушения.


Литература:

1)  Методические указания и контрольные задания (с программой) по дисциплине "Гражданская оборона" для студентов-заочников ДГМА / Сост.: Дементий Л.В., Кузнецов А.А., Поляков А.Е. ‑ Краматорск: ДГМА, 2001. ‑ 30 с.

2)  Конспект лекций по гражданской обороне для студентов дневной и заочной форм обучения / Сост. Дементий Л.В., Кузнецов А.А., Поляков А.Е. – Краматорск: ДГМА, 2001. – 48 c.

3)  Демиденко Г.П., Кузьменко Э.П. и др. Защита объектов народного хозяйства от оружия массового поражения: Справочник. – К.: Высшая школа, 1989.–256 с.

4)  Атаманюк В.Г., Ширшев Л.Г., Акимов Н.И. Гражданская оборона: Учебник для вузов. – М.:Высшая школа, 1986. – 312с.

5)  Депутат О.П., Коваленко І.В., Мужик І.С. Цивільна оборона: Навчальний посібник / За ред. В.С. Франчука. – Львів: Афіша, 2000. – 336 с.

6)  Закон України "Про захист населення і територій від надзвичайних ситуацій техногенного та природного характеру" №1809-III від 8 червня 2000 р.// Офіційний вісник України. – 2000. – № 28. с.11–23

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Донбасская Государственная Машиностроительная Академия Кафедра КИТ Контрольная работа по дисциплине "Гражданская оборона" Выполнил: студе

 

 

 

Внимание! Представленная Контрольная работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Контрольная работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Ориентирование на местности
Оценка устойчивости объекта народного хозяйства к действию поражающих факторов ядерного взрыва
Поступление граждан на военную службу по контракту
Правовая и социальная защищенность подчиненных как одно из основных направлений воспитательной работы офицеров
Стихійні лиха
Структура управления Вооруженными силами в период с 1917-1985 гг.
Тактика спасательных работ и ликвидации чрезвычайных ситуаций
Тактико-специальная подготовка
Определение стойкости цеха к поражающим факторам ядерного взрыва
Оцінка обстановки на підприємствах легкої промисловості в надзвичайних ситуаціях

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru