курсовые,контрольные,дипломы,рефераты
Башкирский Государственный Университет
Кафедра финансов и налогообложения
НА ТЕМУ:
Выполнила: студентка дн.от.
эк.ф-та,3-го курса,гр. 3.4ЭЮ
Хакимова Д.И.
Проверила: научный рук-ль,
доцент ,к.э.н.
Саяпова А.Р.
г. Уфа 1997 г.
ВВЕДЕНИЕ
ГЛАВА 1. Характеристика прогнозирования
1.1. Сущность методов прогнозирования
ГЛАВА 2. Постановка задачи
ГЛАВА 3. Сбор и предварительная обработка данных
3.1. Характеристика временного ряда
3.2. Источник информации
3.3. Принцип сбора данных
ГЛАВА 4. Компонентный анализ
ГЛАВА 5. Регрессионная модель
ГЛАВА 6. Прогнозирование на основе модели АРСС
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
В настоящее время, решением задачи дальнейшего повышения эффективности производства может быть осуществлено на основе использования достижений науки, в том числе экономико-математического моделирования и вычислительной техники. Проникновение математики в экономику, прогнозирование и управление является определяющей особенностью .
Ускорение темпов математизации в экономике объясняется сложностью экономических систем, анализ которых невозможен без точных методов.
Появление ЭВМ , новых компьютерных программ, компьютерных систем, глобальной сети Internet привлекло к расширению экономико-математических исследований, так как позволило резко сократить время, необходимое для решения сверхбольших задач. Основными направлениями экономического и социального развития на ближайшую перспективу предусматривается обеспечить значительный рост объема производства вычислительной техники, повышения ее надежности.
Экономика и ЭВМ тесно связаны между собой, хотя бы потому что нашли широкое применение в практической деятельности органов и служб снабжения и сбыта, экономисты по материально-техническому снабжению должны хорошо знать математические методы и модели, которые могут быть использованы для совершенствования деятельности сферы обеспечения народного хозяйства материальными ресурсами.
В данной курсовой работе я рассматриваю исследование динамики цен на Pentium166, ведущей компьютерной фирмы “ВИСТ-АРСЕНАЛ”, на основе различных моделей. Данный объект прогнозирования был выбран в соответствии с тем, что в настоящее время все больше предпочтение отдается компьютерам, и их роль в экономике не мало важна.
ГЛАВА 1. Характеристика прогнозирования.
В современных условиях на развитие экономики страны существенное влияние оказывает прогнозирование .
Прогноз является научным предвидением на основании имеющихся данных направления, характера каких либо явлений.
Прогнозирование:
Процесс научного предвидения будущего состояния предмета или явления на основании анализа его прошлого и настоящего ; систематическая научно обоснованная информация о качественных и количественных характеристиках развития этого предмета или явления в перспективе. Результатом прогнозирования является прогноз.
Экономическое прогнозирование - научное предвидение наиболее вероятных изменений состояния, структуры и динамики народного хозяйства, отдельных его элементов в будущем; предварительная стадия перспективного планирования. Важнейшей чертой методологии прогнозирования является системный подход.
Научно-техническое прогнозирование - система оценок возможных целей и путей развития науки и техники, ожидаемый результатов научно-технического прогресса; составная часть экономического прогнозирования. Включает в себя : прогноз проведения научно-исследовательских работ в соответствии с целями, будущими потребностями общества; программный этап прогнозирования на котором определяют меры по реализации целей развития науки и техники; организационный этап , на котором определяются конкретные условия , необходимые для выполнения различных вариантов программ.
Прогнозирование содержит в себе две главные цели: первая - это что будет в будущем, каков прогноз, и вторая - как достигнуть ожидаемого прогноза преодолев все препятствия и сделать прогноз желаемым.
Прогнозирование можно разделить на три формы предвидения:
Гипотеза - предположение, истинность которого недоказана. Доказанная гипотеза становится истиной. Различают гипотезу как метод развития научного знания, включающий выдвижение и предстоящую экспериментальную проверку предположения, и как структурный элемент научной теории.
Прогноз - вносит большую определенность в экспериментальную проверку, определяет более точное состояние объекта.
План - раннее составленный порядок действий, включающий заранее предшествующих гипотез и прогнозов, которые сочетаются различными способами. План может составляться до прогноза, а также следовать за прогнозом, прогноз может развиваться одновременно с разработкой плана.
В основе прогнозирования лежит предпосылка, что зависимость в потреблении , существующая в прошлом, сохраниться и в будущем.
Возможные разновидности прогнозов можно представить в виде следующего ряда:
1. Экономические прогнозы - носят преимущественно общий характер и служат для описания состояния экономики в целом по компании или по конкретным изделиям.
2. Прогнозы развития конкуренции - характеризуют возможную стратегию и практику конкурентов, их долю на рынке и так далее.
3. Прогнозы развития технологии - ориентируют пользователя относительно перспектив развития технологий.
4. Прогнозы состояния рынка - используются для анализа рынка товаров.
5. Социальное прогнозирование - исследует вопросы, связанные с отношением людей к тем или иным общественным явлениям.
Экономические прогнозы можно подразделить на три части:
По масштабности объекта прогнозирования (глобальные прогнозы, макропрогнозы, межотраслевые и межрегиональные прогнозы, региональные прогнозы, прогнозы развития народнохозяйственного комплекса, отраслевые прогнозы, микропрогнозы).
По времени упреждения (долгосрочные прогнозы (от 5 до 20 лет и более), среднесрочные прогнозы (от 1 до 5 лет), краткосрочные (от нескольких месяцев до 1 года), оперативные (до одного месяца)).
По цели прогнозирования (поисковый прогноз, нормативный прогноз).
В современных условиях в силу динамичности процессов, возрастание неопределенности информацией, наиболее актуальным делом и реальным делом, становится краткосрочное прогнозирование. при краткосрочном прогнозировании наиболее важным являются последние данные исследуемого процесса, а не тенденции сложившиеся на всем периоде предыстории.
1.1. Сущность методов прогнозирования
В настоящее время существует множество методов прогнозирования, каждый метод содержит множество приемов мышления , имеет свою отличительную особенность. Более эффективными методами прогнозирования, являются те , которые учитывают неравноценность различных уровней ряда.
Для прогнозирования используются различные математические методы от давно изученных и применяемых в математической статистике корреляционных и регрессионных моделей до новых методов экспоненциального сглаживания.
Разработка прогнозов опирается на следующие группы методов прогнозирования:
Качественные методы, Анализирузируя деятельность предприятия, составляя прогноз его функционирования, аналитик не всегда располагает информацией, достаточной для количественных методов прогнозирования, а иной раз высшее руководство фирмы попросту не понимает сложных методов количественного прогнозирования, что, в любом случае, требует применения качественных методов прогнозирования.
Качественные методы прогнозирования предполагают обращение к мнению экспертов - людей наиболее компетентных по исследуемым вопросам.
К качественным методам прогнозирования можно отнести следующие:
Мнение жюри, как правило, сводится к обобщению мнений экспертов с дальнейшим их усреднением;
Модель ожидания потребностей - метод, являющийся в определенной степени обратным методу совокупного мнения, производится опрос клиентов;
Метод экспертных оценок - отобранные и пользующиеся доверием эксперты заполняют опросный лист.
Из всей совокупности возможных методов анализа, вероятно, одним из наиболее перспективных является балловый метод. Его можно использовать не только для прогнозирования, но и для планирования и для анализа. Этот метод позволяет объективизировать совокупность субъективных мнений.
Впервые балловый метод был разработан и использован аналитиками из США для оценки оборонной мощи Советского Союза.
В настоящее время балловый метод широко используется при решении множества задач планирования и прогнозирования в условиях ограниченности исходных данных, например определение возможных вариантов решения управленческой задачи с количественным исчислением предпочтительности каждого из вариантов, количественной оценки степени влияния на анализируемый объект различных факторов и многих других.
В каждом конкретном случае этапы и последовательность их проведения имеют свою специфику, тем не менее существует общая методология баллового метода, которую в формализованном варианте можно представить следующим образом:
формулирование цели проведения экспертного анализа;
определение группы специалистов , обеспечивающей проведение экспертизы;
разработка и обеспечение проведения экспертного анализа;
формирование группы экспертов, участвующих в экспертизе;
разработка анкеты с формулированием вопросов, исключающих их двоякую трактовку и ориентированных на количественную оценку;
проведение анкетирования;
анализ анкет;
проведение анкетирования во второй, третий, четвертый раз, в зависимости от сложности исследования и требуемой точности;
обобщение результатов.
В основном исполнение практически всех этапов носит технический характер. Полученные результаты могут быть использованы для принятия управленческих решений. Следует еще раз отметить, что метод экспертных оценок универсален и пригоден для решения различных проблем. Все виды экспертных оценок, кроме индивидуального интервьюирования экспертов, предполагают коллективное участие экспертов в работе.
Метод Дельфы представляет набор процедур, выполняемых в определенной очередности и имеющих целью формирования группового мнения по проблеме, характеризующейся недостаточностью информации для использования других методов. Метод Дельфы - это типичный представитель методов группового анкетирования. Опрос экспертов осуществляется либо через внешние устройства ЭВМ, либо с помощью опросных листов, ка правило в несколько туров. Результаты опросов обрабатываются, с целью получения среднего из крайних мнений. От тура к туру ответы экспертов носят более устойчивый характер, перестают изменятся. Такое положение служит основанием для прекращения опросов.
Методы экстраполяции представляют предположение о неизменности факторов, определяющих развитие изучаемого объекта , и заключаются в распространении закономерностей развития объекта в прошлом на его будущее. Сущность этих методов заключается в том, что на основе статистической обработки и анализа динамического ряда определяется его тенденция, так называемый тренд ряда. Группу простых методов экстраполяции, составляют методы прогнозирования , основанные на предположении относительного постоянства в будущем абсолютных значений уровней, среднего уровня ряда, среднего абсолютного прироста, среднего темпа роста. Группа сложных методов экстраполяции, основана на выявлении основной тенденции, т.е. применении статистических формул, описывающих тренд.
Методы многофакторного моделирования подразделяются на методы логического, информационного, статистического моделирования. Логическое моделирование представляет собой метод исторической аналогии, основанный на установлении и использовании аналогии объекта прогнозирования с другим одинаковым объектом , опережающим первым в своем развитии. Методы информационного моделирования составляют специфическую область в прогнозировании. методы статистического прогнозирования описывают взаимосвязи признаков-факторов и результативных признаков, систему уравнений взаимосвязанных рядов динамики.
Нормативный метод прогнозирования устанавливает определенный отрезок времени фиксированной системы норм. Инструментами нормативного метода служат теория графов, матричный подход.
Неформальные методы прогнозирования Наглядная информация - информация получаемая от средств массовой информации (кроме печатных органов), а также смежников, поставщиков, конкурентов. Материальные расходы получения такой информации незначительны, однако требуют большого количества времени. Письменная информация - информация, получаемая из печатных источников периодической печати. Так же, как и наглядная, письменная информация не имеет глубокого характера и быстро устаревает. Промышленный шпионаж - информация, полученная посредством промышленного шпионажа, изначально, как важнейшая, находится под защитой пользователя. Такая информация является наиболее ценной.
Количественные методы прогнозирования Применение таких методов целесообразно в случаях устойчивой экстраполяционной направленности исследуемого явления. Иначе говоря, лишь тогда, когда можно предположить, что деятельность в прошлом имела определенную тенденцию, которую можно ожидать и в перспективе, имеющейся информации достаточно для внесения возможных корректив и выявления статистически достоверных зависимостей.
ГЛАВА 2. Постановка задачи.
Целью работы служит исследование изменений цен на компьютер начального уровня модификации Pentium166, базирующегося на платформе Triton (430VX Chipset), с процессором ADM в корпусе MiniTower, в комплект также входит клавиатура, мышь Mitsumi, монитор Sumsung-14”3Ne. Наблюдение производится с 14.10.96 г. по 15.12.97г., прогнозирование цены на 19.12.97г.
Краткие сведения о компьютерах и выбранной модели.
Сегодня трудно, даже невозможно представить себе такую область человеческой деятельности, где бы не использовались компьютеры.
Компьютер - это машина для обработки информации. Поэтому у любого компьютера должны быть устройства, через которые в него поступает информация; устройства где она хранится и обрабатывается, и , наконец , устройства для вывода результатов.
Данная конфигурация модели Pentium166 содержит все необходимые компоненты, для работы на компьютере. Ведь без мыши, клавиатуры и монитора он не представляет собой ничего, потому что вводить информацию без указанных конфигураций становится невозможным. Конфигурация модели Pentium166: платформа Triton (430VX Chipset), с процессором ADM в корпусе MiniTower, клавиатура, мышь Mitsumi, монитор Sumsung-14”3Ne; на сегодняшний день устарела, хотя еще в прошлом году стояла в ряду первых и дорогих. И будет не удивительно, если через некоторое время вовсе пропадет из числа окупаемых себя моделей. Время не стоит на месте и на смену данной модели прийдет другая, более сильная и современная.
ГЛАВА 3. Сбор и предварительная обработка данных.
3.1. Характеристика временного ряда.
Временным рядом называется последовательность наблюдений упорядоченная во времени. Основной чертой выделяющей анализ временных рядов среди других видов статистического анализа, является существенность порядка, в котором производится наблюдение. Если во многих задачах наблюдение статистически независимо, то во временных рядах, они как правило зависимы и характер этой зависимости может определяться положением наблюдений в последовательности; природа ряда и структура порождающая ряд процессов, могут предопределять порядок образования последовательности . Почти в каждой области встречаются явления, которые интересно изучать, их развитие, изменение во времени. В повседневной жизни могут быть примером : метеорологические условия, цены на тот или иной товар, с течением времени изменяется деловая активность, режим протекания того или иного процесса и т.д.
Характерная черта временных рядов - это особенности трактовки понятие непрерывности и дискретности. Существует непрерывность во времени и непрерывность переменной. Измерение цены на Pentium166 может производится непрерывно, при этом наблюдение можно фиксировать в виде графика. Я ограничиваюсь только временными рядами, представляющие собой дискретную последовательность наблюдений, происходимые через регулярные промежутки, т.е. через равные промежутки времени. Календарные неприятности не возникали, т.к. фирма “ВИСТ-АРСЕНАЛ”, любезно предоставила “прайс-листы” составленные в дни после получения товара, а товар поставлялся машиной независимо от “выходных” и “празднуемых” дней, в каждое Воскресение недели.
Общий вид временного ряда выглядит следующим образом:
U(t) = y(1) + y(2) + ... +y(n),
где t - порядковый номер наблюдения ( t = 1, 2, ... n )
n - уровни временного ряда
Формально задача прогнозирования сводится к получению оценок значений ряда на некотором периоде будущего, т.е. к получению значения вида:
Y(t), t = n + 1, n + 2...
При использовании методов экстраполяции исходят из предположения о сохранении закономерностей прошлого развития на период прогнозирования. Во многих случаях при разработке оперативного и краткосрочного прогноза эти предположения являются справедливыми.
Статистические методы исследования исходят из предположения о возможности представления уровней временного ряда в виде суммы нескольких компонент, отражающих закономерность и случайность развития.
Классической моделью временных рядов является четырех компонентная модель:
U(t) = f(t) + S(t) + n(t) + e(t) ,
где f(t) - тренд (долговременная тенденция развития);
S(t) - сезонная компонента;
n(t) - колебания относительно тренда с большей или меньшей регулярностью;
e(t) - случайная (нерегулярная, несистематическая) компонента;
m ( et ) = 0
cov (et1,et2)=0
("t1 и t2)
Случайная компонента удовлетворяющая этим условиям называется “белым шумом”, т.к. ее спектр похож на спектр белого цвета.
Таким образом задача анализа временных рядов сводится к определенности наличия той или иной компоненты, расчленения на отдельные компоненты синтезу модели, использование модели для прогнозирования и управления процесса.
3.2. Источник информации.
Данные для моделирования были взяты из “прайс-листов” ведущей компьютерной фирмы “ВИСТ-АРСЕНАЛ”. Объектом моделирования выступает компьютер модели Pentium166, базирующегося на платформе Triton (430VX Chipset), с процессором ADM в корпусе MiniTower, в комплект также входит клавиатура, мышь Mitsumi, монитор Sumsung-14”3Ne.
Дата |
Pentium166 |
T |
Дата |
Pentium166 |
T |
14.10.96 |
6.509 |
1 |
19.05.97 |
5.450 |
32 |
21.10.96 |
6.468 |
2 |
26.05.97 |
5.442 |
33 |
28.10.96 |
6.351 |
3 |
02.06.97 |
5.431 |
34 |
04.11.96 |
6.289 |
4 |
09.06.97 |
5.422 |
35 |
11.11.96 |
6.193 |
5 |
16.06.97 |
5.410 |
36 |
18.11.96 |
6.115 |
6 |
23.06.97 |
5.342 |
37 |
25.11.96 |
6.103 |
7 |
30.06.97 |
5.298 |
38 |
02.12.96 |
5.989 |
8 |
07.07.97 |
4.899 |
39 |
09.12.96 |
5.973 |
9 |
14.07.97 |
4.585 |
40 |
16.12.96 |
5.889 |
10 |
21.07.97 |
4.422 |
41 |
23.12.96 |
5.861 |
11 |
28.07.97 |
4.395 |
42 |
30.12.96 |
5.689 |
12 |
04.08.97 |
4.297 |
43 |
06.01.97 |
5.601 |
13 |
11.08.97 |
4.215 |
44 |
13.01.97 |
5.632 |
14 |
18.08.97 |
3.985 |
45 |
20.01.97 |
5.590 |
15 |
25.08.97 |
3.765 |
46 |
27.01.97 |
5.588 |
16 |
01.09.97 |
3.653 |
47 |
03.02.97 |
5.580 |
17 |
08.09.97 |
3.672 |
48 |
10.02.97 |
5.571 |
18 |
15.09.97 |
3.665 |
49 |
17.02.97 |
5.563 |
19 |
22.09.97 |
3.660 |
50 |
24.02.97 |
5.571 |
20 |
29.09.97 |
3.652 |
51 |
03.03.97 |
5.569 |
21 |
06.10.97 |
3.650 |
52 |
10.03.97 |
5.563 |
22 |
13.10.97 |
3.643 |
53 |
17.03.97 |
5.552 |
23 |
20.10.97 |
3.640 |
54 |
24.03.97 |
5.542 |
24 |
27.10.97 |
3.632 |
55 |
31.03.97 |
5.531 |
25 |
03.11.97 |
3.612 |
56 |
07.04.97 |
5.530 |
26 |
10.11.97 |
3.593 |
57 |
14.04.97 |
5.522 |
27 |
17.11.97 |
3.564 |
58 |
21.04.97 |
5.502 |
28 |
24.11.97 |
3.514 |
59 |
28.04.97 |
5.500 |
29 |
01.12.97 |
3.510 |
60 |
05.05.97 |
5.480 |
30 |
08.12.97 |
3.508 |
61 |
12.05.97 |
5.463 |
31 |
15.12.97 |
3.498 |
62 |
3.3 Принцип сбора данных.
Данные были собраны путем просмотра “прайс-листов” за период с 14.10.97 по 15.12.97 , которые фирма хранила как в базе данных компьютера, в глобальной сети Internet, а так же и в “подшитом” виде.
График исходных данных.
ГЛАВА 4. Компонентный анализ.
Оценка Тренда.
Тренд - это некоторая функция времени. Тренд характеризует основную закономерность движения во времени, свободную в основном (но не полностью) от случайных воздействий.
Обычно полученная траектория связывается исключительно со временем. Предполагается, что рассматривая любое явление как функцию времени, можно выразить влияние всех остальных факторов. Механизм их влияния в явном виде не учитывается. Исходя из вышесказанного под трендом понимается регрессия на время. Более общее понятие тренда весьма удобное на практике, - это детерминированная составляющая динамики развития, определяемая влиянием постоянно действующих факторов. Отклонения от тренда являются случайной составляющей.
Оценка тренда возможна на основе двух подходов:
оценка на основе гладких функций х = f(x); (параметрические методы)
на основе разного рода скользящих средних (непараметрические методы)
Я оценивала тренд методом вторых разностей.
X - 0.000-1.00*X(t-1); X-0.000-1.00*x(t-1)
Удаление Тренда
Иногда из некоторых временных рядов нужно удалить линейный ил медленно меняющийся тренд . Такого рода тренды наблюдаются в рядах, например, при суммировании одной или нескольких компонент, приводящим к ошибкам двух типов. Во-первых при неправильной калибровке нулевой точки каждый момент отбора данных будет возникать небольшая ошибка. После суммирования эта постоянная величина даст прямую. Такой линейный тренд может привести к большим ошибкам при определении плотности спектра мощности и в связанных с этим вычислениях . Ошибка второго типа возникает из-за возрастания в процессе суммирования мощности, соответствующей низкочастотному шуму. Как правило такой шум в данных всегда есть. При суммировании он обретает форму случайного, но медленно меняющегося тренда. Насколько быстро меняется такой тренд, до некоторой степени зависит от интервала квантования.
Наилучшим способом удаления тренда служит применение высокочастотных фильтров. Полимиальный тренд можно удалять методом наименьших квадратов. Если требуется удаление многочленов только низких порядков, то решение соответствующей системы методом обратной матрицы можно свести к непосредственному вычислению коэффициентов с использованием памяти ЭВМ.
После того как удалили тренд, то получили стационарный ряд.
На графике можно увидеть остатки после удаления тренда.
Стационарный ряд выглядит как не совсем регулярные колебания, около некоторого среднего уровня.
Стационарный случайный процесс может быть представлен в виде суммы гармонических колебаний различных частот, называемых гармониками.
Функция, описывающая распределение амплитуд этого процесса по различным частотам, называется спектральной плотностью. График называется спектром.
Спектр (периодическая шкала).
Спектр показывает, какого рода колебания преобладают в данном процессе, какова его внутренняя структура.
Стационарная случайная функция Х(t) может быть представлена ввиде канонического разложения:
Ґ
X(t) = е (UkCOSWkT + VkSINWkT)
k=0
где Uk,Vk - некоррелированные случайные величины с математическими ожиданиями, равными нулю, и одинаковыми дисперсиями, т.е.
D(Uk) = D(Vk ) = Dk.
Такое разложение называется спектральным разложением стационарного случайного процесса X = Х(t). Спектр стационарной случайной функции описывает распределение дисперсий по различным частотам.
Дисперсия стационарной случайной функции равна сумме дисперсий всех гармоник ее спектрального разложения.
Отсюда делаем вывод, что дисперсия величины Х(t) определенным образом распределена по различным частотам: одним частотам соответствует большая дисперсия, другим - меньшая дисперсия.
Функция x(w) = Dk/W называется спектральной плотностью дисперсии или спектральной плотностью стационарной случайной функци Х(t).
При анализе временных рядов применяется спектральный анализ стационарных случайных функций.
Целью спектрального анализа временных рядов является оценка спектра ряда. Спектром временного ряда, является разложение дисперсии ряда по частотам для определения существенных гармонических составляющих.
Значение спектра оценивается по формуле:
m
f (Wj ) = 1/2p {hoco+2 е hk ck cos Wj k}
k=1
где Wj - частоты, для которых оцениваются спектры:
Wj =p j/ ; j = 1,2,...m;
где ck - автоковариационная функция;
hk - специально подобранные веса значений ковариационной функции,
зависящие от частоты m;
hk - еще называют кореляционным окном;
m - целое число называемое точкой усечения или числом
используемых сдвигов и представляющее собой число частотных
полос, для которых оценивается спектр.
Чем больше m , тем больше точек оцениваемого спектра, а следовательно, и больше дисперсия оценки в каждой точке.
Чем меньше m, тем лучше оценка.
Величина m зависит от длины временного ряда.
На графике где изображен спектр можно проследить возрастание и убывание спектра, на графике также можно наблюдать пики т.е. отклонения от тренда.
Но также исходя из этого, можно увидеть что временной ряд не имеет периодичности, т. е. нет исходных повторяющихся особенностей ряда.
Кроме того, спектральный анализ можно еще рассмотреть путем изучения сезонных колебаний. Это бы позволило выявить периодические составляющие исследуемого ряда с целью повышения точности прогнозирования.
В данной работе удаление сезонной компоненты не представляет возможности, так как исследуемый ряд не имеет сезонности.
Башкирский Государственный Университет
Кафедра финансов и налогообложения
Выполнила: студентка дн.от.
эк.ф-та,3-го курса,гр. 3.4ЭЮ
Хакимова Д.И.
Проверила: научный рук-ль,
доцент ,к.э.н.
Саяпова А.Р.
г. Уфа 1997 г.
Удаление тренда различными способами используемые программой Statistika версии 4.3
Модель Holt (a =0.300,a=0.800)
Модель Winters (a =0.300,a=0.800)
Модель Брауна (a =0.300,a=0.800)
Удаление тренда различными способами используемые программой Statistika версии 4.3
Я работала в программе Statistica 4.3 которая позволяет удалить тренд, исходя из ниже предложенных графиков можно увидеть различные способы для его удаления. Но эти способы не явились более подходящими, и поэтому представлены для анализа проделанной курсовой работе.
На этом графике использовался метод Trend subtract
(x=x-(a+b*t)), где а= 6.606, b = -0.52 .
Тренд в данном случае неудалился, так как сам тренд не линейный.
Сделав вывод, что тренд не линейный, я проделала попытку удалить тренд в Nonlinear Estimatoin получила следущее:
Model: PENTIUM = b1+b2/t+b3/t**2 | |||
N=62 |
Dep.var: PENTIUM loss (OBS - PRED)**2 FINAL loss:31.852464424 R=.67433 variance explained: 45.473% |
||
b1 |
b2 |
b3 |
|
Estimate |
4.34597 |
11.85681 |
-10.0804 |
График удаления тренда не линейным способом:
Выше описанным способом тренд тоже не удалился.
Модель Holt (a =0.300,a=0.800)
Примером адаптивной модели предназначенной для прогнозирования сезонных процессов, является модель Хольта. Эта модель предполагает мультипликативное объединение линейного тренда и сезонные составляющие во временном ряду.
Модель Хольта при a = 0.300
Exp.smoothing: SO=6.534 TO = 0.49
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.300 Gamma=0.1 PENTIUM Error |
Mean error |
.00731672825436 |
Mean absolute error |
.13134104302219 |
Sums of squares |
1.96424677027454 |
Mean squares |
.03168139952056 |
Mean percentage error |
.26328877539247 |
Mean abs. pers. |
3.01698849598955 |
График по Хольту с a = 0.300
Exp.smoothing: SO=6.534 TO = 0.49
CASE | SMOOTHED SERIES |
16.12.97 |
3.379367 |
17.12.97 |
3.343613 |
18.12.97 |
3.307860 |
19.12.97 |
3.272107 |
Модель Хольта при a = 0.800
Exp.smoothing: SO=6.534 TO = 0.49
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.800 Gamma=0.1 PENTIUM Error |
Mean error |
.00315177373958 |
Mean absolute error |
.05706002635321 |
Sums of squares |
.48259413419920 |
Mean squares |
.00778377635805 |
Mean percentage error |
.12944834490985 |
Mean abs. pers. |
1.26337346085392 |
График по Хольту с a = 0.800
Exp.smoothing: SO=6.534 TO = 0.49
CASE | SMOOTHED SERIES |
16.12.97 |
3.457111 |
17.12.97 |
3.423383 |
18.12.97 |
3.398655 |
19.12.97 |
3.355927 |
Модель Winters (a =0.300,a=0.800)
Модель Уйнтерса при a = 0.300
Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.300 Delta=.100; Gamma=0.1 PENTIUM Error |
Mean error |
.00850967552279 |
Mean absolute error |
.13196744584935 |
Sums of squares |
2.02519074270767 |
Mean squares |
.03266436817876 |
Mean percentage error |
.27239869561423 |
Mean abs. pers. |
3.02001823889308 |
График по Уинтерсу с a = 0.300
Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52
CASE | SMOOTHED SERIES |
16.12.97 |
3.373012 |
17.12.97 |
3.337162 |
18.12.97 |
3.309019 |
19.12.97 |
3.283079 |
Модель Уйнтерса при a = 0.800
Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.800 Delta=.100; Gamma=0.1 PENTIUM Error |
Mean error |
.00387269483310 |
Mean absolute error |
.06040575200437 |
Sums of squares |
.54276104822497 |
Mean squares |
.00875421046649 |
Mean percentage error |
.14058659957529 |
Mean abs. pers. |
1.32624409579650 |
График по Уинтерсу с a = 0.800
Exp.smoothing:Multipl.season(12) SO=6.433 TO = 0.52
CASE | SMOOTHED SERIES |
16.12.97 |
3.453841 |
17.12.97 |
3.429777 |
18.12.97 |
3.407928 |
19.12.97 |
3.380729 |
Модель Брауна (a =0.300,a=0.800)
Модель Брауна может отображать развитие не только в виде линейной тенденции, нои в виде случайного процесса, не имеющего тенденции, а также ввиде изиеняющейся параболической тенденции.
Модель Брауна при a = 0.300
Exp.smoothing: SO=4.982
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.300 PENTIUM Error |
Mean error |
-.0780414476807 |
Mean absolute error |
.1978141110028 |
Sums of squares |
6.8610393089365 |
Mean squares |
.1106619243377 |
Mean percentage error |
-2.2104491142263 |
Mean abs. pers. |
4.0726990990745 |
График по Брауну с a = 0.300
Exp.smoothing: SO=4.982
CASE | SMOOTHED SERIES |
16.12.97 |
3.530736 |
17.12.97 |
3.530736 |
18.12.97 |
3.530736 |
19.12.97 |
3.530736 |
Модель Брауна при a = 0.800
Exp.smoothing: SO=4.982
TIME SERIES Summury of error |
Lin.trend; no season; Alpha= 0.300 PENTIUM Error |
Mean error |
-.0298811251614 |
Mean absolute error |
.08804695430620 |
Sums of squares |
3.1058602054085 |
Mean squares |
.05009465809765 |
Mean percentage error |
-.90807550618029 |
Mean abs. pers. |
1.70449937474829 |
График по Брауну с a = 0.800
Exp.smoothing: SO=4.982
CASE | SMOOTHED SERIES |
16.12.97 |
3.500203 |
17.12.97 |
3.500203 |
18.12.97 |
3.500203 |
19.12.97 |
3.500203 |
Прогнозирование по вышеуказанным моделям получается не совсем стабильным.
Регрессионная модель
В экономической деятельности очень часто требуется не только получать прогнозные оценки исследуемого показателя, но и количественно охарактеризовать степень влияния на него других факторов.
Рассматривая зависимость цены на компьютер Pentium166 и инфляции я получаю:
REGRESSION SUMMARY for Dependent Variable: PENTIUM
R=.68998993 RI=.47608611 Abjusted RI=.45593557 F(1,26)=23.626 p<.00005 std. Err of estimate |
||||||
N = 28 |
BETA |
St.Err. of BETA |
B |
St.Err. of B |
t(26) |
p-level |
Intercpt |
6.701069 |
.537806 |
12.46001 |
.000000 |
||
Inf |
-6.89990 |
1.41953 |
-.345470 |
.071074 |
-4.86071 |
.000049 |
Проектировка и корректировка организационной структуры предприятия
Проектування контрольних операцій на прикладі розв”язання задачі визначення фактичної вартості в2 (укр)
Расчет и анализ производительности труда
Расчет налогов и оптимизация налогообложения
Расчет основных технико-экономических показателей деятельности производственного участка
Расчет семейного бюджета на полугодие
Решение многокритериальной задачи линейного програмирования
Статистический анализ оплаты труда по отраслям на основе системы национальных счетов
Статистическое изучение загрязнения окружающей среды
Установление цены с применением нормативно-параметрических методов
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.