. , , ,

,,,

"" —

 

, [1], (, , ) - .

..  (18051865) [2].

. , 19 , , 23 . 1833 . . .

10 , , , . , , , , .

..  : 16- , , , . ; , - , , - . ; , , , , , . i, j, k, , , , . , , , 13- .

, 1873 .  (18451879), ..  (18651944) 1895 , , .. [36]. [7].

( k), , . , λy , :

,

, , k.

4 , 1 1, i, j, k [1]:

x i j k

i -1 k j

j k -1 i

k j i -1

:

.

R

R .

, . 27 : 3- (ab) c=(bc), i, j, k.

, C. 2- , ( i , ), .

: ( ) , , I, Y, K , .

.

, C , C 2(C) 2- C, , I, J, K C 2(C).

α = + i + j + dk . . i + j + dk α. , , , .

-. ( ):

, (u1, u2) U1 U2. , - U1U2 u1 u2, . u1u2 u1, u2. .


, , :

,

u1, u2, u3:

[u1, u2, u3] + [[u2, u3], u1] + [[u3, u1], u2] = 0.

.

α = + i + j + dk = + u.

= i j dk = u, α , α. , .

α .

α= ( + u) ( u) = 2 + u u u2 = a2 + (u, u) [u, u] = 2 + (u, u) = 2 + 2 + 2 + d2.

, α ≠0, α>0. , α=α.

() α . , , 0 α . , , α . , R . , , R, a2 + b2 + d2 ≠ 0 α ≠0 , , C .

.

. 2-x .

.

, , 2- , , .

, α = + u, β = + v, , R, u v -. αβ = b + v + u + vu = ab (uv) + av + bu + [u, v].

, = b ub + vu = b (u, v) v bu + [v, u] = b (u, v) v bu [u, v] = αβ.

:

,

, .

,

α = 1 b1i c1j d1k, β = 2 2i 2j d2k ,


αβ=a1a2+b1b2+c1c2-d1d2+(1b2-1a2-1d2+d1c2) i+(1c2+b1d2-1a2-d1b2) j+(1a2-1c2+1b2-d1a2) k.

:

(12+12+12+d12) (22+22+22+d22)=(1a2+b1b2+1c2+d1d2)2+(1b2-b1a2-1d2+d1c2)2+(1c2-b1d2-1a2-d1b2)2+(1d2-b1c2+1b2-d1a2)2,

4 . ( ) 8 . , n , n = 2,4,8 n = 1, .

u, v, w , , i, j, k. υ2 = v2 = ω2 = -1. , υv = vυ + [υ, v] = [υ, v] = ω. , , i, j, k. , vυ = -ω; vω = -ωv = υ; ωυ = -υω = ω. , υ, v, ω i, j, k. , 1→1, i→υ, j→v, k→ω , , . , i, j, k υ, v, ω, , , , 2 , .

.

, υ, v, ω φ- i, j, k . υ2 = v2 = ω2 = -1; vυ = -υv = ω; vω = -ωv = υ ωυ = -υω = v. υ2 = 1 , . , υ = + υ1, υ. -1 = υ2 = 2 + 2υ1 - , 2υ1= 0. , υ1= 0, 1 = 2, . υ ≠ 0, , = , . υ v . , , υv = ω 0, , υ v . υ, ω ω, υ, υ, v, ω . i, j, k, υv = ω, vυ = ω.

α . →α-1α , , . α=+υ0, α. , = sφ, = sinφ, 0≤φ≤. α = cosφ + υsinφ, υ ( α = -1, υ0 = 0 υ ).

v - , υ, v, ω = υv. , →α-1α υ, v, ω. , α υ , α -1υα = υ.

,

α-1= cosφ-υsinφ; α=cosφ+υsinφ;

α-1vα=(cosφ-υsinφ) v (cosφ+υsinφ)=(vcosφ-ωsinφ) (cosφ+υsinφ)=

=vcos2φ-ωsinφcosφ+vυsinφcosφ-ωυ2sinφ=v (cos2φ-sin2φ)-2ωsinφcosφ=vcos2φ-ωsin2φ;

α -1ωα =(ωcosφ+vsinφ) (cosφ+υsinφ)=vsin2φ+vcos2φ.

, →α-1α υ 2φ , v ω ( v ω), , , υ, 2φ. , , →α-1α .

, →α-1α , .

α →α-1α, .

. →α-1α , , , . .

, α = + bi + j + dk , α-1α = , , .., α = α. = i, = d = 0, , = j,

b = d = 0.

, α = =1, . , S0 (3) - {1}.

, , , . . 3 .

, u(2) 2- .

, α = + bi + j + dk

,

.

, *=, .. .

, det = 2 + b2 + 2 + d2 = 1, = det=1, -1=* δ=, γ= β, , .

, α→ u(2) .

, , , .

1. .. , . , , , .. .

2. [5, 6], , sinvers, .. .

3. , , . , . . 1611 , . , . , , , , , , . [8], , ( ), , 10928, 90. , . . 1 (. 1), , , () [5, 6]. , , 180. 6- , - 90, 10928 (. 1) 4 (. 1).

4. : ,  ,  ,   , .

, , . , ,  . , ,  , , , , .

, , . ,   , , , 2 . , , , 3600,   720.

, . , , SO(3) , , . ? . , (, , ) , . , ( ). , , . . , , - 900 - 3600, 10928.

, , . , , . , , , , , , . , , , . . ,     , . .. .

5. . , , , .

6. - S0 (m, n) n- , , S0 (1,4) S0 (2,3) (de Sitter) [8], [810]. , . . . . , [7] , , , -, -. [6] 10- . .  (18641909), .  (18531928). , , , - [6, 8].

 

 


 

1.    .. . / . . .. . .: . 1965. 539 .

2.   Hamilton W.R. On quaternions; or on a new system of imaginaries in algebra. Philos. Mag., 1844, v. 25. P.1013.

3.    ..  . , 1895.  ..  . . . .: , 1950.

4.    ..  . ., , . . - ., 1978.

5.    ..,  ..  . .: , 1973. 144 .

6.    ..  . .: , 1986. 120 .

7.    ..  . . .: . 2006. 289 c.

8.    ..,  ..   // 1, 2009. . 7580.

9.    ..,  ..  -- / . 609984. 06.09.84 . : . 1984. 33 . (Lev F.M. and Mirmovich E.G., VINITI No 6099 Dep.; Lev F.M. A possible mechanism of gravity Artwork Conversion Software Inc., 1201 Morningside Drive, Manhattan Beach, CA 90266, USA. arXiv:hep-th/0307087 v1 9 Jul 2003).

10.              .. : ,  // . .: . .. . 1. 2004. . 112122 (www.hypercomplex.ru).

11.              ..  - // . 1 (7). 2007. . 133140.

12.              ..,  ..,  ..  . : . 1989. 211 c.

13.              .. : . .: . I / . .. . .: . . 2006. . 142.

, [1], (, ,

 

 

 

! , , , .
. , :