,,,
03-112 - 116.
1. n- Rn. . . Rn.
2. . , , .
3. . . .
4. . , . .
5. . . . ( } f(), . .
6. . . .
7. .
8. . . .
9. . . . - .
10. . .
11. .
12. .
13. .
14. . , . . .
15. .
16. . .
17. .
18. . .
19. .
. . .
20. .
21. . . .
22. . .
23. , .
24. .
25. .
26. . .
27. . .
28. .
29. . .
30. . .
31. . .
32. .
33. .
34. .
35. .
36. .
37. . .
38. .
39. .
40. .
41. .
42. . .
43. . .
44. .
45. .
46. .
47. ,
48. .
49. . .
50. -
51. .
52. .
53. . .
54. . .
55. . .
#1{ } n - p(x,y) n- Rn. { - R ''} xR'' R xX >0 U(x,) . R'' R'' - - { -.} (x,) - - 1 (x,y)=0 x=y1; 2) p(x,y)= p(y,x) x,yX; 3) p(x,y)<= p(x,z)+p(z,y) x,y,z X (,)- /
#2 - - , . - . {}- =f(u) u=(x) .. - - f u {}- - : ** +**=1 - {} 2 - =(t) =(t) :TX :TY t=(x) :X T - f:XY f(x)=((x)) - f - (t) (t) {} - f:Y Y g:YX yY g(y)=x f(x)=y f f( -1)
#3
-
f:
NX
-
f(n)
n-
n
c
f:NX
{Xn}
n
n=1,2,3
{Xn}
=lim(n)xn
"e>0
$ne
=n(e)N
n>ne
-
/n-/
#4
{xn}
lim(n)xn=0
{xn}
.
{xn}
1/{xn}
- .
{xn}
=> "e>0
$ne=n(e)
n>ne
/xn/>1/e
=> 1//xn/
#5 {
-}
f(x)
.
.
-
xa
E>0
=(E)>0
: x
0<|x-a|<
. |f(x)-A|
#6
{ -
.}
lim
- f(x)
=lim(a)f(x)
f(x)=A+(x)
; (x)
-
{-}
=lim()
f(x)
; (x)=f(x)-A
(x)-
.
>0
()>0
,
0 /f(x)-A/<
=> /(x)/=/f(x)-A/<
(x)
f(x)=
(x)+A
(x)
>0
>0
0 /f(x)-A/=/(x)/
<
=> lim()f(x)=A
{
-
}
f1(x)
= lim()f2(x)=B
1) lim(f1(x)+f2(x))=A+B
2) lim(f1(x)*f2(x))=AB
3) lim(f1(x)/f2(x))=A/B
0
; 1-e
- lim()f1(x)=A
lim()f2(x)=B
=> f1(x)=A+1(x)
f2(x)=B+2(x)
12
-
f1(x)+f2(x)=A+B+12=
A+B+(x)==
()
..
2 ==lim()(f1(x)+f2(x))=A+B
{
}
lim()f1(x)=b1
lim()f2(x)=b2
b1
#7{
-}
limxaf(x)=A
limyAg(y)=B
U(a,1)
-
g(f(x))
f(x)
limxag(f(x))=limyAg(y)
{-} E>0
..
limyAg(y)=B
>0
|y
, 0<|y-A|<
|g(y)-B|
#8{
-} f(x)
O-
- -
g(x)
-
f(x)
=O(g(x))
E
,
C>0
| |f(x)|C(g(x))
x
E
f(x)=O(1)
E
f(x)
..
>0 | |f(x)|C
xE
-
f(x)
g(x)
(.)
(.)
f(x)
o-
g(x)
xa
f(x)=o(g(x)),
xa
,
f(x)=E(x)g(x),
limxfE(x)=0
x=o(x),
x0
f(x)=og(x)
, xa
E(x)=x
h(x)=o(g(x)),
xa;
(x)+h(x)=o(g(0))+o(g(x)=o(g(x))
xa
f(x)
O-
g(x)
xa,
U(a)
| f(x)=O(g(x))
U(a)
f(x)=O(g(x)),
xa
- f(x)
g(x)
xa,
-
0
(.)
limxaf(x)/g(x)=1
f(x)g(x)
xa
{} ,
- f(x)
g(x)
,
f(x)=g(x)+o(g(x))
xa
g(x)0
(xa)
{-}
f(x)g(x)
, xa
g(x)
0
U(0)
limxaf(x)/g(x)=1
E(x),
E(x)0
xa
| f(x)/g(x)=1+E(x)
f(x)=g(x)+E(x)g(x)=g(x)+o(g(x)),
xa.
f(x)=g(X)+o(g(x))
xa
, g(x)+o(x+a)
f(x)=g(x)+E(x)g(x),
limxaE(x)=0
f(x)/g(x)=1+E(x)
limxaf(x)/g(x)=1
f~g(x)
xa
{
-}
f(x)
g(x)
.. -
xa
g(x)0
U(a)
{O}
f(x)/g(x)
xa
0 , -
.. .
f(x)/g(x)=0
f(x)
..
g(x)
xa
{O}
- f(x)
.. -
.. g(x)
xa,
- f(x)
gk(x)
..
xa
9{
- }
-
()f(a)=f(a+h)-f(a)
h=0
>0
=()>0
h
/h/<
/f(a+h)-f(a)/<
- f(x)
f(a+0),
f(a-0)
f(a+0)=f(a)=f(a-0){
}
- .
()
f(a+0)=limxa+0f(x)
(f(a-0)=limxa-0f(x))
f(a+0)=f(a)
(f(a-0)=f(a))
{
}
-
f(x)
f(a+0),
f(a-0)
-
.
1-
-
1-
.{
-}
- f(x)
f(a)0
:U(a)
>0
f(x)>c
xU(a,)
((1)f(a)>0)
f(x)<
-c
xU(a)
f(a)<0
{-}
=/f(a)//2>0
>0
xU(a)
=> /f(x)-f(a)/<
=/f(a)//2
f(x)
#10{-
- }
{ -}
-
f(x)
[a,b]
.
(.)
(a,b)
f(c)=0
{T2}
-
f(x)
X([c,d],[c,d),(c,d],(c,d))
. a,b
X
, a0
(a,b)
| (c)=0
f(c)-C=0
f(c)=C
{}- f(x)
[a,b]
.{}
- f(x)-
[a,b]
.
[a,b]
| f()=minf(x)
x[a,b];
f()=maxf(x)
x[a,b]
f()<=f(x)<=f()
x
[a,b].
{
}
- y=f(x)
- Rn
>0
=()>0
| x’,x’’X,(x’,x’’)<|f(x’)-f(x’’)|<;
f(x)
..
>0
=
| x’,x’’R,
|x’-x’’|<=
{ } -
.
-
.
#11
{
- }
- f(x)
. , a
- g(y)
b
=f(a)
-=g(f(x))
{-}
>0
- g()
b
>0
/-b/<
-
g(y)
/g(y)-g(b)/<
- g(x)
>0
()
(-;+)
(-;+)
=> /f(x)-f(a)/<.
(-;+)
- g(f(x))
(-;+)
/g(f(x))-g(f(a))/<
=>
=> g(f(x))
.
#12
{
-}
=f(x)
[a,b]
[A,B]
,
-
x=(y)
{} y0[A,B]
x0=(y0),
f(x0)=y0
x0(a,b)
; >0
,
[x0-,x0+][a,b]
y1=f(x0-)
y2=f(x0+)
- f
y(y1,y2)x=(y)(x0-,x0+)
[A,B]
[a,b]
>0
(.) 0 (1,2) | (1,2)
(y)(x0-;x0+)
+
-
-
. 0 .
{} 0=
0=(y0)=b
#13
{
-} 1)f(x)=C
. f(x)=f(x+h)-f(x)=C-C=0;
limh0f(x)=0;
2) f(x)=x;
f(x)=x+h-x=h
limh0h=0;
3)f(x)=xn,
nN
,
-
xn=xn-1x;
4)f(x)=a0xn+a1xn-1++an-
-;
5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1++an)/(b0xm+b1xm-1+..+bm)-
,
.
0
-.;6) f(x)=sinx
xR,
|sinx|<=|x|
.(OB,ox)=x;
(OB’,ox)=x
0<=x<=/2
..
|BB’|<=BAB’ ; |BB’|=2Rsinx; BAB’{}=2Rx
2Rsinx<=2rx; sinx<=x ;
-/2<=x<0
|sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=/2
|x|>/2
|sinx|<=1</2<|x|
{}
sinx- .
|f(x)|=|sin(x+h)-sinx|=|2sinh/2cos(x+h/2)|<=2|sinh/2|
limh0sinh/2=0
7.f(x)=cosx
|f(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2|
|h|0;
8)f(x)=ax
,a>=0
f=(ax+h-ax)=ax(ah-1)
limh0ax(ah-1)=0;
9)f(x)=logax
a>0 a1
(0,+)
10)arcsinx, arccosx
.
.
#14
{
}
{an}
. 1+2+3n
12-
n
1-
{
}
n
lim(n)an=0
-
an
lim(n)Sn=S=lim(n)S(n-1)
lim(n)an
= lim(n)(Sn-S(n-1))
= lim(n)Sn-lim(n)(Sn-1)=0
. {
} -
(n=1,)an
>0
n
n>n
Z
p>=0
/n+an+1+an+2+an+p/<;
{} (n=1..)1/n(
)
>1 <1
; n<=n
<=1
1/n+1/(n+1)++1/(2n-1)>=1/n+1/(n+1)++1/(2n-1)>1/2n+1/2n++1/2n=n/2n=1/2
=1/2
n
p=n-1
| - -
|an++an+p|>
.
>1,
=2-1>0
S2k=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)++(1/(2k-1+1)+,,,+1/(2k));
1/(n+1)+1/(n+2)++1/(2n)>1/n+1/n+1/n=n/n=1/n-1=1/n<1+1/2+1/2/(1-1/2)
{S2k}
.. n
k
|n<2k
Sn
#15
{-
}
+n=1an
- -
,
. {}
k=m+1+ak-
.
n=a1++an
n-
(1,+)an
A’s=am+1++am+s
s-
k=m+1+ak,
A’s=Am+s-Am
.. limnaAn
limS+Am+S
limS+A’S=lims+Am+S-Am
k=m+1+ak
cx-c;
k=m+1+ak
-
; Am+S=AS’+Am;
n=m+s
An=A’n-m+Am (n>m) ..
lims+A’Slimn+A’n=m
limn+A=limn+An-n+Am
n=1+an
.
{}
(1,+)an
-
n=(k=n+1,+)ak
limn+n=0
{}
An=(1,n)ak,
A=limn+An
A=An+nn=A-A1
limn+n=A-limn+An=0
{}
(n=1,+)an
(n=1,+)bn
-
-,
(n=1,+)(an+bn)
-
(n=1,+)an
-
{}
n=(k=1,n)ak,
Bn=k=1nbk;
A=limn+An,
B=limn+Bn;
limn+(An+Bn)=A+B,
limn+An=A
..
An+Bn=(a1+b1)++(an+bn)-
n-
(n=1,+)(an+bn)
An=a1++an-
n-
.
#16{T
}
2
(n=1..)an
(n=1..)bn
n>=0
bn>=0
(n=1,2,3)
no
n>no
n
#17{
(
)} an
an>0
n=1,2,3
(n+1)/an
<=q<1
(n=1,2,3)
=>
q>=1
{-}
n=
a1*a2/a1*a3/a2an/a(n-1)<=a1qq=a1qn-1
q<1 ..
(n=1,+)qn-1
c-
=> (n=1,+)n
c-
(n+1)/an
>=1 => (n+1)>=an>=>=a1>=0
lim(n)an0
=>
{
}
: limn+an+1/an=k;
1)k<1
; 2)k>1
. {-}
k<1
>0
|k+<1
n0
| n>n0
an+1/an
#18
{O}
n=1+(-1)n-1an,
an>0{
}
(-1)n-1
n
cn>0;
1)C(n+1)<=C(n)
n=1,2,3;
2)Lim(n)(Cn)=0
{-}
c
S2k
:
S2k=(c1-c2)+(c3-c4)++(c(2k-1)-c(2k))
..
S2k=c1-(c2-c3)--(c(2n-2)-c(2n-1))-c2n {
}
1-
#19
n=1an
|an|.
an
c
|an|
-
.
{
}
{}
n=1+an
-
n=1+|n|
--
>0
n|
n>n
pZ
p>=0
- -:
|an+an+1++an+p|<=|an|++|an+p|<
n=1+an--.{-
}
{1} n=1+an
,
.
{2}
n=1+an
n=1+bn
aibi
=
an
bn
{
}
n=1+an
. {1}|an-1|/|an| ;
limn+|an-1|/|an|=k;
k<1
n=1+an-
k<1
n=1+an-
k>1
n=1+an-
{2}
-
n|an|;
k=limn+
n|an|;
k<1
n=1+an-
k>1
n=1+an-
.
#20{
} {}
-
zn=xn+iyn,
n=1,2
z0=x0+y0
>0
n
| n>n
|zn-z0|<
;
-
zn=xn+iyn
n
0 .
yn
0. {-}
z0=limnzn
>0
n
|
n>n
=|zn-z0|<
.. |zn-z0|=((xn-x0)+(yn-y0))
|zn-z0|>=|xn-x0|
|zn-zo|>=
|yn-y0|
n>n
. -
|xn-x0|<=|zn-z0|<
; |yn-y0|<=|zn-z0|<
. limnXn=x0
limnyn=y0
{}
- .
{Zn}.
.
.
{}
zn=xn+iyn
s=+i
.
(n=1,+)xn
(n=1,+)n
-
Sn=(k=1,n)xk+i(k=1,n)yk
(n=1,+)zn
limn+zn=0
{} zn=xn+iyn
.. (n=1,+)zn
(n=1,+)xn
(n=1,+)n
limn+xn=limn+yn=0
limn+zn=limn+xn+ilimn+yn=0
. {} zn
zn
zn
|zn|
.
. {}
.{}
(n=1,+)zn
(n=1,+)|zn|
-
.. |xn|<=(xn+yn)=|zn|,
|yn|<=|zn|
(zn=xn+iyn)
(n=1,+)|xn|
-c
(n=1,+)|yn|
-
(n=1,+)xn
(n=1,+)n-
(n=1,+)zn
c
{}
(zn=xn+iyn)
,
xn
yn
{}
(n=1,+)|xn|
(n=1,+)|n|
|zn=(xn+yn)<=
(yn+2|xn||yn|+yn)
<= (|xn|+|yn|)=|xn|+|yn|
(n=1,+)|zn|
- c-.
#21{
} {O}
f(x)
. 0-
-
,
0;
f'(x0)=limx0(f(x0+x)-f(x0))/x
{O}
A=const
.
- f
. 0
dy
df(x);
dx
.. dy=Adx
{} -
f(x)
(.) x0
-
(.) 0 {-}
y=f(x0+x)-f(x0)
..
limx0y/x=f’(x0)
y/x=f’(x0)+(x),
(x)
0
0
y=f’(x0)x+(x),
()0
0
y=f’(x0)x+(x)x
limx0y=0
f(x)-
.0 {O}y=f(x)-
U(x0) .0
=0
=f(x0+x)-f(x0),
x0+xU(x0)
=+(),
0{}
,
- y=f(x)
,
.
{-}
y=f(x)
- 0
y
=f(x0+x)-f(x0)=
Ax+o(x),
x0;
limx0y/x=
limx0(A+o(x)/x)=A;
.. . 0 f’(x0)=limx0y/x=A
{}
- y=f(x)
. 0
f’(x0)=limx0y/xy/x=f’(x0)+(x),
limx0(x)=0
y=f’(x0)x
+(x)x
y=f’(x0)x+o(x),
x0
- f-
. 0
22
{
}
-
y=f(x)-
(a;b)
x0,
x0+x(a,b),
y0=f(x0),
y0+y=f(x0+x)
M0(x0,y0)
M(x0+x,y0+y){}
MM0
-
y=y0+k(x)(x-x0),
k(x)=y/x;
y=f(x)
.(0) 0
0
|M0M|=(x+y)0
0
MM0
{}
limx0k(x)=k0
y=y0+k(x)(x-x0)
- k(x)=y/x
0
-
=f(x)
(.) (0,0) .. k(x)=y/x,
k0=limx0k(x)=
limx0y/x=f’(x0)
y=y0+f’(x0)(x-x0)
; f’(x0)=tg;
y=y0+k0(x-x0)
;
y=y0+k(x)(x-x0)
M0M
.. f’(x0)(x-x0)=dy
dy=y-y0
-
.
..
- (.) 0
.{
.}
-
y=f(x)
(.) (0,0)
-.
,
,
k=-1/f’(x0)
; y-f(x0)=-1(x-x0)/f’(x0)
x
y
#23
-
U(x)
V(x)
(.)
d(U+(-)V)=(U+(-)V)’dx=(U’+(-)V’)dx=U’dx+(-)V’dx=dU+(-)dV;
2)d(UV)=(UV)’dx=(U’V+V’U)dx=U’Xdx+V’Udx=Vdu+Udv;
3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V=(U'Vdx-V’Udx)/V=(Vdu-Udv)/V
24 {
-.} Dh:
: z=f(y)
- .
y0
; y=(x)
.
0
. y0=(x0)
- z=f((x))-
.
0
:
z’x=z’yy’x=f’(y)’(x)
; dz/dx=dz/dy
dy/dx
{}.. z=f(y)
- .
y0
z=f’(y0)y+(y);
.. y=(x)-
.
0
y=’(x0)x+(x);
z=f’(y0)’(x0)x+f’(y0)(x)+(y);
. y=(x)
- .
0
(x0y0).
(x)=f’(x0)(x)+(y);
limx0/x;
limx0(x)/x=
limx0[f’(x0)(x)/x+(y)/x]=
limx0(y)/x=
limx0(y)/y
limx0y/x=’(x0);
(f((x)))=(f’(y0)’(x0))x+(x),
limx0(x)/x=0
(f((x)))’x=z’x=f’(y0)’(x0)
#25
{
-.} y=f(x)
0 :
1) f’(x)0,
2) ,
0,
- y=f-1(x)=(y)
3) y0=f(x0);
(.) 0
f’()0,
'(y0)=1/f’(x0).
{-}
x=(y)
.
xx0yy0x0
y0
y/x=1/y/x
; y=f(x)
.
x0
limx0y=0x0y0
f’(x0)=limx0y/x=
limy01/y/x=1/limy0x/y=1/’(y0)
; f’(x0)0’(y0)=1/f’(x0)
#26
{
}
y=[u(x)]v(x),u(x)>0;
lny=v(x)lnu(x);
y'/y=v’(x)lnu(x)+v(x)u’(x)/u(x);
y’=uv(v’lnu+vu’/u);
(lny)’=y’/y-
- {
-} 1) y=Const
y=c-c=0limx0y/x(C)’=0
; 2) y=sinx
y’=cosx
3)(cosx)’=-sinx
4) (ax)’=axlna
5)(arcsinx)’=1/1-x
6)(arccosx)’=-1/(1-x)
7) (arctgx)’=1/(1+x)
8) (arcctgx)’=-1/(1+x)
9) (lnx)’=1/x
; 10) (x)’=x-1
#27 {
. }{}
y=f(x);
f(n)(x)=(f(n-1)(x))’
..
- y=f(x)
(.)
n-
,
(.) 0
n-1
,
(.) 0 f(n-1)(x0)
. n-
- f
{}
n-
} {}
dnf(x)=d(dn-1f(x))
,
dx
dy=d(dy)=d(f’(x)dx)=df’(x)dx=f’’(x)dx;
dny=f(n)(x)dxn
;f(n)=dny/dxn
) uv(n)
= u(n)v
+ Cn1
u(n-1)v'
+Cn2
u(n-2)v''
+ +C1n
u(n-k)v(k)
+ uv(n)
=k=0nCkn
u(n-k)v(k),(
),
Cnk
=n!/k!(n-k)!
, 0! = 1, v(0)
=
v. (u + v)(n)
= k=0nCkn
u(n-k)v(k)
-
.
.
#28
{
}
x=x(t),
y=y(t)
t0
t=t(x)
x0=x(t0)
-
()=(t(x))
.
x(t)
g(t)
. 0 -
()=(t(x))
(.) 0
’(x)=y’t(t0)/x’t(t0)
-
’(x0)=y’t(t0)t’x(x0);
t’x(x0)=1/x’t(t0)
((0)=y’t(t0)/x’t(t0)
x’(t0)0
- x(t)
g(t)
x’’(t0)
y’’(t0)
’’(x0)
=(’(x))’x|x=0=(y’t/x’)’
x|x=x0=(y’t/x’t|t|t=t0t’x|x=x0=y’’tt(t0)x’t(t0)-y’t(t0)xtt’’(t0)/(x’t(t0))
#29
().
f(x)
()
,
f’()=0.
.
,
f(x)
.
f’(c)=limx(f(c+x)-f(c))/x
;
f(c)>=f
(x)
xU(),
x>
0
;(f(c+x)-f(c))/x
x0
,
f’()<=0.
x<0,
(f(c+x)-f(c))/x>=0
,
x0
,
,
f’()>=0.
,
f'(c)=0.
#30
().
y=f(x)
[,
b],
(, b) f
()
==f(b),
c0(,b),
,
f'(c)=0.
.
f
[, b],
c(a,
b)
f'(c)=0.
,
f
[, b].
f
[, b],
x1
[, b],
f
[, b]
2[,
b],
f
[, b].
[,b],
maxf(x)=minf(x)=f(a)
=f(b)
f
[,
b].
,
x1,2
(, b).
c.
.
,
f'(c)
,
f'(x)
(,
b).
f’(c)=0.{}
.
,
y=f(x)
(c,f(c))
.
#31 ().
f(x)
[,
b]
(,b).
(, b) ,
(f(b)-f(a))/(b-a)=f'(c)
(<
tg=k=(f(b)-f(a))/(b-a)
.
.
.
-
F(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a)
-
,
..
[a,b]
f(x)
(x-a)
(a,b)
F’(x)=f’(x)-(f(b)-f(a))/(f-a)
x(a,b)
F(a)=0=F(b)
(a,b)
| F’(c)=0
f’(c)-(f(b)-f(a))/(b-a)=0
,
(f(b)-f(a))/(b-a)=f’(c)
(a<c<b)
,
(a,
f(a))
(b,f(b))
y=f(x),
(,
b).
,
[, b] ,
(a, b),
,
(
<
< b)
,
,
(, f()) (b,
f(b))
#32().
f(x)
g(x)
[, b]
(, b), g'(x)0
(, b),
c(a,
b) ,
( f(b)-f(a))/(g(b)-g(a))=f’(c)/g’(c)
.
,
g(b)-g(a)0,
,
g
, g'(c)=0,
.
F(x)=f(x)-f(a)-(f(b)-f(a))(g(x)-g(a))/(g(b)-g(a))
F
[,
b],
(,
b) F(a)=0,
F(b)=0.
,
,
c(a,
b),
F'(c)=0
F’(x)=f’(x)-(f(b)-f(a))g’(x)/(g(b)-g(a))
,
c,
.
#33(
) 1)-
f(x)
g(x)
(a,b]
;2) limxa+0f(x)=limxa+0g(x)=0;
3)
()
f’(x)
and
g’(x)
(a,b]
y’0
; 4)
(
) limxa+0f’(x)/g’(x)=k
limxa+0f(x)/g(x)=k
{-}
- f(x)
g(x)
x=a
f(0)=g(0)=0
;
[a;b]
- (.. .a
f
g
,
)
.
f(x)/g(x)=(f(x)-f(a))/(g(x)-g(a)=f’(c)/g’(c);
a
#34
-
{} -
y=f(x)
(a,b)
.(a,b)
n
f’(x),f’’(x),,f(n)(x);
f(x)=f(x0)+f’(x0)(x-x0)/1!+
f’(x0)(x-x0)/2!++
f(n)(x0)(x-x0)(n)/n!+o((x-x0)n)-
.
f(x)=f(x0)+f’(x0)(x-x0)/1!+
f’(x0)(x-x0)/2!++
f(n)(x0)(x-x0)(n)/n!+f(n+1)(c)(x-x0)n+1/(n+1)!-
.
Pn(x)=f(x0)+f’(x0)(x-x0)/1!++f(n)(x0)(x-x0)n/n!--
n,
- rn(x)=f(x)-Pn(x)-
- ;
=0 - .
{}
Pn(x)=A0+A,(x-x0)n
;Pn(x0)=f(x0),
Pn’(x0)=f’(x0),,Pn(n)(x0)=f(n)(x0)
(1)
Pn(x)=A0+a1(x-x0)++An(x-x0)n;Pn(x0)=f(x0),Pn’(x0)=f’(x0),,Pn(n)(xn)=f(n)(x0);
Pn’(x)=A1+2A2(x-x0)++nAn(x-x0)n-1
; P’’n(x)=2A2+32A3(x-x0)+.+n(n-1)An(x-x0)n-2
;Pn(n)=n(n-1)(n-2)An;
P(x0)=A0=f(x0);
Pn(x)=f(x0)+f’(x0)(x-x0)/1!+fn(x0)(x-x0)/2!++f(n)(x0)(x-x0)n/n!;
Pn(x0)=f(x0),
Pn’(x0)-f’(x0),,Pn(n)(x0)=f(n)(x0)
; rn(x)=f(x)-Pn(x)
..
rn(n-1)(x)
- ()
x0
limxx0rn(n-1)(x)/(x-x0)=
limxx0
(rn(n-1)(x))-rnn-1(x0)/(x-x0)=rnn(x0)
limxx0rn(x)/(x-x0)n=
limxx0rn’(x)/n(x-x0)n-1==
limxx0rn(n-1)(x)/n!(x-x0)=rn(n)(x)/n!=0
rn(x)=o((x-x0)n),xx0
#35
-
.
1)f(x)=ex,
f(0)=1,
f(k)(x)=ex,
f(k)(0)=1,
ex=1+x+x/2!++xn/n!+o(xn),
x0;
2)f(x)=sinx,
f(0)=0,
f’(x)=cosx,
f’’(x)=-sinx,
f’’’(x)=-cosx,
f(IV)(x)=sinx,;
f(k)(x)={(-1)msinx,
k=2m
{(-1)m-1cosx,
k=2m-1
m=1,2,;
f(2m-1)(0)=(-1)m-1
n=2m
sinx=x-x3/3!+x5/5!-+(-1)n-1x2m-1/(2m-1)!+o(x)2m,x0;
cosx=1-x/2!+x4/2!-x6/6!+.+(-1)mx2m/(2m)!+o(x2m+1),x0;
4)f(x)=ln(1+x)f(0)=ln1=0,
f’(x)=1/(1+x),
f’’(x)=-1/(1+x),
f’’’(x)=2/(1+x)3,f(k)(x)=(-1)k-1(k-1)/(1+x)k
;f(k)(0)=(-1)k-1(k-1)!
l(1+x)=x-x/2+x3/3+..+(-1)n-1xn/n+o(xn),x0
; 5)f(x)=(1+x)
f(0)=1,
f’(x)=(1+x)-1,
f’’(x)=(-1)(1+x)-2;
f(k)(x)=(-1)(-k+1)(1+x)-k
;f(k)(0)=(-1)(-k+1);
(1+x)=1+x+(-1)x/2!++(-1)(-n+1)xn/n!+o(xn),
x0
#36
-. {}
- f(x)
(a,b),
,
- ()
f’(x)>=0
(f’(x)<=0)
f’(x)>0
(f’(x)<0),
-
()
(a;b)
{} f-
() x0(a,b),
x>0,
f(x0+x)-f(x0)>=0;
x0;
(y<=0)
y/x>=0
(y/x<=0)
f’(x0)=limx0y/x>=0
(f’(x0)<=0);
{}
x(a,b)
f’(x)>=0
(f’(x)<=0)
a
#37{}
()
x0
- f(x),
=0 .
{} .. (.) x0
U(x0,)
|
xU(x0,)
f(x)>=f(x0)
f(x)<=f(x0)
.. (.) x0
- y=f(x)
.U(x0,)
=0 {}
:
-
y=f(x)
(.) x0
0
.
0
-
(..
>=0
|
x(x0,x0+]
f’(x)<0
(or
f’(x)>0),
x(x0-,x0]
f’(x)<0
(or
f”(x)>0)
0
x(,x0+);
f’(x)>0,a
x(x0-,x0)
f’(x)<0
x0
,
x(x0-,x0)
f’(x)<0,
x(x0,x0+)
f’(x)>0
xo-.
{}
x(x0-,x0)
f’(x)>0
x(x0,x0+)
f”(x)<0.
f=f(x)-f(x0)=f’()(x-x0)
0
>x0
x-x0>0
x0<
#38
y=f(x)
-
()
x1,x2
X
- f(q1x1+q2x2)<=q1f(x1)+q2f(x2)
(f(q1x1+q2x2)>=q1f(x1)+q2f(x2)),
q1>0,q2>0,
q1+q2=1
:
x=q1x1+q2x2
(x1
#39 :
- y=f(x)
>A=const
- f(x)
x>A.
L:
-
: y=ax+b.
(x,f(x))
L
0
,
+
-{}
L
(x)=|f(x)-ax-b|/(1+a)
.. L
limx+(x)=0
limx+(f(x)-ax-b)=0
limx+(f(x)/x-a-b/x)=0
limx+(f(x)/x-a)=0
a=
limx+f(x)/x
; b=
limx+(f(x)-ax).
limx+f(x)/x
lim
+
.
=
b
y=ax+b
.
{} -
y=f(x)
. 0
-
limx0-0f(x)=
limx0+0f(x)=
=0
.
#40 {O}
-
F(x)
- f(x)
-
F’(x)=f(x)
{T}
- F(x)
(x)
- f(x)
const
{-}
F(x)
f(x)
F’(x)=f(x)
(F(x)+c)’=F’(x)=f(x)F(x)+c-
f(x)
F(x)
(x)
f(x)
- ()=F(x)-(x)
’(x)=F’(x)-’(x)=f(x)-f(x)=0
1,x2X
(2)-(1)=’(c)(x2-x1)=0
. (x2)=(x1)
(x)=c=const
{T}
F1(x)
F2(x)-
f(x)
(a,b),
F1(x)-F2(x)=C
(a,b),
C-
.
#41
{O} -
f(x)
-
- f(x)
f(x)dx
; F(x)-
f(x)
f(x)dx=F(x)+C;
{C-}
1) - F(x)
, F’(x)dx=F’(x)+C;
2) - f(x)
d(f(x)dx)=f(x)dx;
3) f1
and
f2
-
f1+f2
(f1(x)+f2(x))dx=f1(x)dx+f2(x)dx
{} F1(x)-
f1(x),
F2(x)-
f2(x),
F1(x)+f2(x)-
f1(x)+f2(x),
.. (F1(x)+F2(x))’=F1’(x)+F2’(x)=
f1(x)+f2(x);
5) F(x)
f(x),
f(ax+b)dx=1/aF(ax+b)+C
{}
[1/aF(ax+b)]’=1/aaF’(ax+b)=f(ax+b);
#42
:
f(x)
=(t)
-
t,
f(x)dx=f((t))’(t)dt+C=f((t))d((t))+C--
.
{ }
-
U(x),V(x)
U(x)V’(x)dx
V(x)U’(x)dx=U(x)V(x)-U(x)V’(x)dx
-
. {-}
.. - U(x)
V(x)
(UV)’=U’V+UV’U’V=(UV)’-UV’;
..
UV’dx
(UV)’dx=UV+C
U’Vdx=(UV)’dx-UV’dx=UV-UV’dx+C
U’Vdx=UV-UV’dx;
exsinxdx=exsinx-excosxdx=|U’(x)=ex
V’(x)=sinx|=exsinx-(excosx-exsinxdx);
exsinxdx=exsinx-excox-exsinxdx;
2exsinxdx=exsinx-excosx
exsinxdx=(exsinx-excosx)/2
#43
n
n
Pn(z)=A1(z-z1)k1(z-zs)ks,
k1++ks=n;
-
-
Pn(z)Pn(z)=(z-a)mQn-m(z)
a-
- m
Pn(z);
Pn(x)-
,
Pn(x)Pn(x)
xR
:
Pn(x)
.
.. (z-a)(z-a)
Pn(x)=(x-a1)1(x-ar)r(x-z1)1(x-zs)bs(x-zs)s=(x-a1)1(x-ar)r(x+p1x+q1)1(x+psx+qs)s;
Pj/4-qj<0,
j=1,,s;
a1,,arR,
Pj,qjR
{} Px
Qx
,
degP(x)
#44
-
R(x,m(ax+b)/(cx+d)
.
t=m(ax+b)/(cx+d)
.
tm=(ax+b)/(cx+d);
x=(b-dtm)/(ctm-a)
- t;
dx=(mtm-1(ad-bc)dt)/(ctm-a)
R(x,m(ax+b)/(cx+d))dx=R((b-dtm)/(ctm-a),t)
(mtm-1(ad-bc)dt)/(ctm-a)=R1(t)dt.
R1(t)-.{}
R(x,ax+bx+c)dx,
-
, b,
c
.
ax+bx+c
1 2
ax+bx+c=a(x-x1)(x-x2)
R(x,ax+bx+c)=R(x,(x-x1)(x-x2)a/(x-x1)=R1(x,(x-x2)/(x-x1)
;
ax+bx+c
>0.
() t=(ax+bx+c)
+xa
ax+bx+c=t-2xta+ax;
x=(t-c)/2t(a)+b
- t
.. ; <0
>0 (ax+bx+c)>=0)
ax+bx+c=xt+c
{}{}
#45
R(cosx,sinx);
R(cosx,sinx)dx
t=tg(x/2)
(-
#46
{O}
[a,b]
- xi,
I=0,1,,i
x0=a
#47{O}
- y=f(x)
(.)
a
f(x)dx=0,
- y=f(x)
.[a,b]
baf(x)dx=-abf(x)dx
{-1} abdx=b-a
- f(x)1
[a,b]
(.) i
f(i)=1=i=1if(i)xi=i=1ix1=(x1-x0)+(x2-x1)+(x3-x2)++(xi-x-1)=xi-x0=b-a
lim||0=b-a
{-2}
f,g
[a,b]
, -
f+g
[,b]
:
ab(f(x)+g(x))dx=
abf(x)dx+
abg(x)dx
{} ={xi}
i=i
i=o
i[xi-1,xi]
,
E(f+g)=i=1i(f(i)+g(i)xi=ii=1f(i)xi+ii=1g(i)xi=(f)+(g)
.. f
g
-
[a,b]
lim||0(f)=abf(x)dx;
lim||0(g)=abg(x)dx
; lim||0(f+g)=abf(x)dx+abg(x)dx
.. - f+g
-
[a,b]
ab(f(x)+g(x))dx=lim||0(f+g)=abf(x)dx+abg(x)dx
{- 3}
- y=f(x)
[a,b]
- f(x)
-
[a,b]
abf(x)dx=abf(x)dx
{- 4}
a
#48
{T
}
1) f
g
[a,b];
2) m<=f(x)<=M,
[a,b];
3) .[a,b]
- g(x)
. ..
,
| mM
abf(x)g(x)dx=abg(x)dx
{-} ..
[a,b]
mf(x)M
- g(x)
mg(x)f(x)g(x)Mg(x)
g(x)0;
mg(x)f(x)g(x)Mg(x)
g(x)0;
.. f
g
[a,b]
-
mabg(x)dxabf(x)g(x)dxMabg(x)dx
g(x)0;
mabg(x)dxabf(x)g(x)dxMabg(x)dx
g(x)0;
abg(x)dx=0
-
: abf(x)g(x)dx=0
- abf(x)g(x)dx=abg(x)dx
;
abg(x)dx0
g(x)0
abg(x)dx>0,
g(x)0
abg(x)dx<0;
-
abg(x)dx
:
mabf(x)g(x)dx/abg(x)dxM;
=abf(x)g(x)dx/abg(x)dx
abf(x)g(x)dx=abg(x)dx
{}
- y=f(x)
[a,b]
[a,b]
,
abf(x)g(x)dx=f()abg(x)dx
#49
-
y=f(x)
[a,b]
[a,x]
axb
-
F(x)=
axf(t)dt,
x[a,b]
- F(x)
{T1}
- y=f(x)
[a,b],
F()
[a,b].
{-}
x[a,b]
x+x[a,b]
:
F=F(x+x)-F(x)=
ax+xf(t)dt-axf(t)dt;
.. - y=f(x)
[a,b]
C>0.
|f(x)|
x[a,b]|F|=|xx+xf(t)dt||
xx+xdt|=|x|
limx0F=0
-
. ... {T2}
y=f(x)
[a,b]
x0
[a,b]
F(x)=
axf(t)dt
(.) 0[a,b]
F’(x0)=f(x0)
{-}
x0+x[a,b]
F=F(x0+x)-F(x0)=
ax+xf(t)dt-
ax0f(t)dt=
ax0f(t)dt+
x0x+xf(t)dt-
ax0f(t)dt=
xx0+xf(t)dt
|F/t-f(x0)|=|1/x|,
x0x0+xf(t)dt-f(x0)/x=|1/x
x0x0+x
(F(t)-f(x0))dt|1/|x||
x0x0+xf(t)-f(x0)dt
.. - f(x)
0
E>0
>0
||x-x0|<E|f(x)f(x0)|
50
- -
abf(x)dx=(b)-()=()|b
(1) {T}
(
)
-
y=f(x)
[a,b]
()-
.
(1) {-} F(x)=
axf(t)dt
- F(x)
(x)
f(x)
[a,b]
F(x)=()+;
axf(t)dt=()+
x=a
af(t)dt=0
0=()+
=-()
axf(t)dt=()-()
x=b
(1) ...
#51{
}
1)f(x)
[a,b];
2)x=(t)
[a,b];
3) ()=a
,()=b
;4)t[;]
(t)[a,b];
abf(x)dx
= abf((t))’(t)dt
{-}
[,]
-
f((t));
F(x)-
f(x)
[a,b]
F((t)),
-
f((t))’(t)
[,]
-
abj(x)dx
= abj((t))’(t)dt
.
-
: abf(x)dx
=F(b)-F(a);
abf((t))’(t)dt
=F(())-F(())=F(b)-F(a)=
abf(x)dx
... { }
u(x)
v(x)
[a,b]
abu’(x)v(x)dx=u(x)v(x)|ba-
abu(x)v’(x)dx
{-}
u(x)v(x)
[a,b]
(u(x)v(x))’=u(x)v’(x)+u’(x)v(x)
-
u(x)v(x)|ab=
ab
(u(x)v’(x)+u’(x)v(x))dx=
abu(x)v’(x)dx+
abu’(x)v(x)dx
abu’(x)v(x)dx=u(x)v(x)|ba-
abu(x)v’(x)dx
#52(
)
R;
R
-
.;
,
R,
.
A-A
B-B
; d-
,
d0
A
B
,
-
,
;
-
f(x)
[a,b]
f(x)0
x[a;b]
x=a,
x=b.
={xi}i=0i=i-
[a,b];
gi={(x,y),
x[xi-1,xi],
0ymi=inff(x)}
Gi={(x,y),
x[xi-1,xi],
0yMi=supf(x)};
Sg=i=1imixi;
SG=i=1iMixi
{T}
,
- f(x)
[a,b]
.
: lim||0(Sg-SG)=0
{} .. - f(x)
[a,b]
.
lim||0SG=
lim||0Sg=S=
abf(x)dx
{}
r=f(),
f()
[,]
f()0
[,]
{} -
gi={(,r),
[i-1,i],
0rmi=inff()}
Gi={(,r),
[i-1,i],
0rMi=supf()}
.. - f(x)-
[,]
gi=mi/2
Gi=Mi/2;
Sg=1/2i=1imi
SG=1/2i=1iMi
lim||0SG=
lim||0Sg=S=1/2
f()d
P-
Sp=1/2
f()d.
#53
y=f(x)
[a,+)
[a;b]
[a,+)
- f(x)
a+f(x)dx=limb+
abf(x)dx.
,
a+f(x)dx
,
,
.
{} [a,+)
abf(x)dx=
acf(x)dx+
cbf(x)dx
{} -
a+f(x)dx
c
limb+
abf(x)dx
{}
(2)
,
:
E
> 0
b0
< b0
< b,
,
|F(b’’)-F(b’)
b'
b",
b0 <
b'
< b"
< b.
F(b’’)-F(b’)=b’b’’f(x)dx
.
{O}
(a;b]
- f(x)
abf(x)dx=
lima+0
abf(x)dx.
,
. {} af(x)dx
bf(x)dx
a
#54
f(x)
[a,b)
-+
{T1}
f(x)0
x[a,b)
[a,].
abf(x)dx
,
af(x)dx,
a<0
| af(x)dx
#55abf(x)dx-
.
ab
|f(x)|dx
abf(x)dx-
, ab
|f(x)|
dx
abf(x)dx-
.
{}
.
,
ab
|f(x)|
dx
,
E>0
(, b)
b0
,
b0
< b'
< b"
< b,
E>
b’b’’
|f(x)|
dx|
b’b’’
f(x)dx
. .
abf(x)dx
.
|ab’f(x)dx|
ab’
|f(x)|
dx
b'b
ab
f(x)dx
|ab
f(x)dx|
ab
|f(x)|
dx
{
}
- y=f(x)
.
-+f(x)dx
v.p.
+f(x)dx=lim+
-+f(x)dx;
+
.
.
- f(x)
. [a,c-E],[c+E,b],
E>0 .
.
.
v.p.
abf(x)dx=limE0
(aC-Ef(x)dx
+C+Ebf(x)dx)
#56
{
}
f(x)
,
[1;+)
(n=1,+)f(n)
1+f(x)dx
{-} .. -
[1,+)
[1,][1,+)
.. -
[1,+)
=1,2,3
f(k)>=f(x)>=f(k+1),
k<=x<=k+1
kk+1f(x)dx>=kk+1f(k+1)dx
f(k)>=
kk+1f(x)dx>=f(k+1)
(k=1,n)f(k){=Sn}>=(k=1,n){=
1n+1f(x)dx}
kk+1f(x)dx>=(k=1,n)f(k+1){=Sn+1-f(1);
Sn>=
1n+1f(x)dx>=Sn+1-f(1)
; 1+f(x)dx
M>0
| [1;+)
1f(x)dx<=M
Sn+1-f(1)<=
1n+1f(x)dx<=M
Sn+1<=M+f(1)
n;
-
;
,
n=1,2,3
1n+1f(x)dx<=Sn<=M
n
..
[1,+)
n
N
| <=n
1nf(x)dx<=
1f(x)dx+
n+1f(x)dx=
1n+1f(x)dx<=M
..
1
f(x)dx
,
1+f(x)dx-.
1.
n-
Rn.
.
.
Rn.
2.
. ,
,
.
3.
.
.
.
4.
.
,
.
.
5.
.
.
.
(
}
f(),
.
.
6.
.
.
.
7.
.
8.
.
.
.
9.
.
.
.
-
.
10.
.
.
11.
.
12.
.
13.
.
14.
.
,
.
.
.
15.
.
16.
.
.
17.
.
18.
.
.
19.
.
.
.
20.
.
21.
.
.
.
22.
.
.
23.
,
.
24.
.
25.
.
26.
.
.
27.
.
.
28.
.
29.
.
.
30.
.
.
31.
.
.
32.
.
33.
.
34.
.
35.
.
36.
.
37.
.
. 38.
. 39.
. 40.
.
41.
.
42.
.
. 43.
.
. 44.
. 45.
. 46.
.
47.
,
48.
. 49.
.
. 50.
- 51.
. 52.
. 53.
.
. 54.
.
. 55.
.
. 56.
. 2k
.
Copyright (c) 2024 Stud-Baza.ru , , , .