. , , ,

,,,

1- —

03-112 - 116.

1. n- Rn. . . Rn.

2. . , , .

3. . . .

4. . , . .

5. . . . ( } f(), . .

6. . . .

7. .

8. . . .

9. . . . - .

10. . .

11. .

12. .

13. .

14. . , . . .

15. .

16. . .

17. .

18. . .

19. .

. . .

20. .

21. . . .

22. . .

23. , .

24. .

25. .

26. . .

27. . .

28. .

29. . .

30. . .

31. . .

32. .

33. .

34. .

35. .

36. .

37. . .

38. .

39. .

40. .

41. .

42. . .

43. . .

44. .

45. .

46. .

47. ,

48. .

49. . .

50. -

51. .

52. .

53. . .

54. . .

55. . .


#1{ } n - p(x,y) n- Rn. { - R ''} xR'' R xX   >0 U(x,) . R'' R'' - - { -.} (x,) -  - 1 (x,y)=0  x=y1; 2) p(x,y)= p(y,x)  x,yX; 3) p(x,y)<= p(x,z)+p(z,y)  x,y,z X  (,)- /

#2 - - , . - . {}- =f(u) u=(x) .. - - f u {}- - : ** +**=1 - {} 2 - =(t) =(t) :TX :TY t=(x) :X T - f:XY f(x)=((x)) - f - (t) (t) {} - f:Y Y g:YX yY g(y)=x  f(x)=y f f( -1)

#3 - f: NX - f(n) n- n c f:NX {Xn} n n=1,2,3 {Xn} =lim(n)xn "e>0 $ne =n(e)N n>ne - /n-/0 $n1 n>n1 /xn-a/n1 e2=b-r>0 $ n2 n>n2 /xn-b/ xn>r n>n2 no=max(n1,n2)=> n>no xn>r xn a=b .{} . {} N . - , - , , , .

#4 {xn} lim(n)xn=0 {xn} . {xn} 1/{xn} - . {xn} => "e>0 $ne=n(e) n>ne /xn/>1/e => 1//xn/ne = lim(n) 1/xn=0 {T} {-} {xn}- {n}- => $M>0 /n/0 {xn}- =>$ne=n(e) n>ne /Xn/ n>ne /xnyn/=/xn/yn<(e/M)*M=e => lim(n)(xnyn)=0 {} n0:n>n0 aNbNcN Lim aN=a, Lim cN=c, a=c, Lim bN=b => a=b=c. {} >0,  n’: n>n’ => cN<(a+E) &  n”: n>n” => (a-E)N. n>max{n0,n’,n”} (a-E)NbNcN<(a+E), ..  n>max{n0,n’,n”}=>bN(a-E,a+E) { } Lim xN=x, Lim yN=y, n0: n>n0 NyN, xy {-} ( ): > =>  n0’: n>n0’ |N-|0”: n>n0” |yN-y|max{n0’, n0”}: |N-|<|-|/2 & |N-|<|-|/2, .. 2 (-,+) & (-,+)], (-,+)(-,+)=. n>max{n0’, n0”} N(-,+) & N(-,+) , > : n>max{n0’, n0”} N>yN - .

#5 { -} f(x) . . - xa E>0  =(E)>0 : x 0<|x-a|< . |f(x)-A|xaf(x)=} E{}>0  =(E)>0 | x 0<|x-a|<  |f(x)|xaf(x)= {O limxaf(x)=+} E>0  =(E)>0 : x 0<|x-a|< f(x)>E {O limxaf(x)=-} E>0  =(E)>0 : x 0<|x-a|< f(x)<-E {O limxf(x)=A} >0  =()>0 : x |x|> |f(x)-A|< {O limxf(x)=} E{}>0  =(E)>0 : x |x|> |f(x)|>E { } () - f(x) ghb xa+0(-0) / >0 =()>0 x a(-)xa+0(-0)f(x){ } - f(x) limxa, . {} limxaf(x)=A limxaf(x)=B , U(A;); U(B;),  1) =()>0 | x 0<|x-a|<  |f(x)-A|<  f(x)U(A;) 2) 2=2()>0 | x 0<|x-a|<2  |f(x)-B|<  f(x)U(B;) 0=max(1,2),  . 0<|x-a|<0 . f(x)U(A;E), f(x)U(B;E)  , .. = ...{ (.) f(x)} xa f(x) lim=A , .{-} .. limxaf(x)=A, =1 >0 | x 0<|x-a|< . |f(x)-A|<1  |f(x)|=|f(x)-A+A||f(x)-A|<|f(x)-A|+|A|<1+|A|  0<|x-a|< - f(x) (.) { -}{} - f(x)  limxaf(x)=0 {o} - limxaf(x)=+(-) {T} f(x) , 1/f(x) . f(x)  0 (.) a, 1/f(x)  {} E>0  =(E) >0 | x . 0<|x-a|<  |f(x)|>1/E  1/f(x)0 | x, . 0<|x-a|<1 f(x)0 E{}>0  2>0 | 0<|x-a|<2 |f(x)|<1/E{}, =min(,2) x , 0<|x-a|< - f(x)0, |f(x)|<1/E  1/f(x)>E  1/f(x)  {T} . xa xa {} limxaf1(x)=0 limxaf2(x)=0 >0, 1=1()>0 |  0<|x-a|<1  |f1(x)|</2  2=2()>0 | x, 0<|x-a|<2 |f2(x)|</2 =min(1,2)  x 0<|x-a|<  |f1(x)+f2(x)|<=|f1(x)|+|f2(x)|=/2+/2=  limxa(f1(x)+f2(x))=0 {T} xa - xa {} limxag(x)=0, - g(x) U(,1) ..  >0 |  U(a,1) |g(x)|< >0   2>0 | x, 0<|x-a|<2  |g(x)|</ ; =min(1,2)  x, 0<|x-a|<  |f(x)g(x)|=|f(x)||g(x)|</=  limxaf(x)g(x)=0

#6 { - .} lim - f(x)  =lim(a)f(x)  f(x)=A+(x) ; (x) -  {-} =lim() f(x) ; (x)=f(x)-A (x)- .  >0    ()>0 , 0 /f(x)-A/< => /(x)/=/f(x)-A/< (x)  f(x)= (x)+A (x)   >0  >0  0 /f(x)-A/=/(x)/ < => lim()f(x)=A { - } f1(x)  = lim()f2(x)=B 1) lim(f1(x)+f2(x))=A+B 2) lim(f1(x)*f2(x))=AB 3) lim(f1(x)/f2(x))=A/B 0 ; 1-e - lim()f1(x)=A lim()f2(x)=B => f1(x)=A+1(x) f2(x)=B+2(x) 12 -  f1(x)+f2(x)=A+B+12= A+B+(x)== () .. 2 ==lim()(f1(x)+f2(x))=A+B { } lim()f1(x)=b1 lim()f2(x)=b2 b1 f1(x) 1)1=c-b1>0 1>0 U(a,) /f1(x)-b1/<1 = c-b1 => b1-c f1(x)0 U(a,) =>/f2(x)-b2/<=b2-c => c-b2 U(a,) => f1(x) f1(x)()f1(x)=b1 lim()f2(x)=b2  U(a,) U(a,) f1(x)<=f2(x)=> b1<=b2 {} b1>=b2 U(a,) U(a1,1) => f1(x)>f2(x) o =min(12) =>U(a1,o) => f1(x)f2(x)- - => =>b1<=b2 {} limxa(x) ; limxaf(x) limxa(x)=A limxa(x)=A - U(a,) - (x)f(x)(x) limxaf(x)=A {-} E>0  2>0 | x 0<|x-a|<2  A-E<(x)0 | x, 0<|x-a|<3  A-E<(x)

#7{ -} limxaf(x)=A limyAg(y)=B U(a,1) - g(f(x)) f(x) limxag(f(x))=limyAg(y) {-} E>0 ..  limyAg(y)=B  >0 |y , 0<|y-A|< |g(y)-B|xaf(x)=A  1=  <1 | x , 0<|x-a|<  0<|f(x)-A|<  x, 0<|x-a|<  |g(x)-B|xag(f(x))=B=limyAg(y)

#8{ -} f(x) O- - - g(x) - f(x) =O(g(x)) E ,  C>0 | |f(x)|C(g(x)) x  E f(x)=O(1) E  f(x) ..  >0 | |f(x)|C xE - f(x) g(x) (.) (.) f(x) o- g(x) xa f(x)=o(g(x)), xa , f(x)=E(x)g(x), limxfE(x)=0 x=o(x), x0 f(x)=og(x) , xa E(x)=x h(x)=o(g(x)), xa; (x)+h(x)=o(g(0))+o(g(x)=o(g(x)) xa f(x) O- g(x) xa,  U(a) | f(x)=O(g(x)) U(a) f(x)=O(g(x)), xa - f(x) g(x) xa, - 0 (.)  limxaf(x)/g(x)=1 f(x)g(x) xa {} , - f(x) g(x) , f(x)=g(x)+o(g(x)) xa g(x)0 (xa) {-} f(x)g(x) , xa g(x) 0 U(0)  limxaf(x)/g(x)=1   E(x), E(x)0 xa | f(x)/g(x)=1+E(x) f(x)=g(x)+E(x)g(x)=g(x)+o(g(x)), xa. f(x)=g(X)+o(g(x)) xa , g(x)+o(x+a) f(x)=g(x)+E(x)g(x), limxaE(x)=0  f(x)/g(x)=1+E(x)  limxaf(x)/g(x)=1  f~g(x) xa { -} f(x) g(x) .. - xa g(x)0 U(a) {O} f(x)/g(x) xa 0 , - .. . f(x)/g(x)=0 f(x) .. g(x) xa {O} - f(x) .. - .. g(x) xa, - f(x) gk(x) .. xa

9{ - } - ()f(a)=f(a+h)-f(a) h=0  >0  =()>0 h /h/< /f(a+h)-f(a)/<  - f(x) f(a+0),  f(a-0) f(a+0)=f(a)=f(a-0){ } - . () f(a+0)=limxa+0f(x) (f(a-0)=limxa-0f(x)) f(a+0)=f(a) (f(a-0)=f(a)) { } - f(x)  f(a+0), f(a-0) - . 1- - 1- .{ -} - f(x) f(a)0 :U(a) >0 f(x)>c xU(a,) ((1)f(a)>0) f(x)< -c xU(a) f(a)<0 {-}  =/f(a)//2>0  >0 xU(a) => /f(x)-f(a)/< =/f(a)//2 f(x)0 => /f(a)/=f(a)=> xU(a) f(a)/2 c = f(a)/2; 2) f(a)<0 => /f(a)/=-f(a)=> xU(a) f(a)/2>f(x) => c = - f(a)/2 >0 => f(x)<-c

#10{- - } { -} - f(x) [a,b] . (.) (a,b) f(c)=0 {T2} - f(x) X([c,d],[c,d),(c,d],(c,d)) . a,b  X , a0   (a,b) | (c)=0  f(c)-C=0 f(c)=C {}- f(x) [a,b] .{} - f(x)- [a,b] . [a,b] | f()=minf(x) x[a,b]; f()=maxf(x) x[a,b] f()<=f(x)<=f() x [a,b]. { } - y=f(x) - Rn >0 =()>0 | x’,x’’X,(x’,x’’)<|f(x’)-f(x’’)|<; f(x) .. >0 = | x’,x’’R, |x’-x’’|<= { } - . - .

#11 { - } - f(x) . , a - g(y) b =f(a) -=g(f(x)) {-} >0 - g() b >0  /-b/< - g(y) /g(y)-g(b)/< - g(x)  >0 () (-;+) (-;+) => /f(x)-f(a)/<. (-;+) - g(f(x)) (-;+) /g(f(x))-g(f(a))/< => => g(f(x)) .

#12 { -} =f(x)  [a,b] [A,B] , - x=(y) {} y0[A,B]  x0=(y0), f(x0)=y0 x0(a,b) ; >0 , [x0-,x0+][a,b] y1=f(x0-) y2=f(x0+) - f y(y1,y2)x=(y)(x0-,x0+) [A,B] [a,b]  >0 (.) 0 (1,2) | (1,2) (y)(x0-;x0+)  +  -  - . 0 . {} 0=  0=(y0)=b 

#13 { -} 1)f(x)=C . f(x)=f(x+h)-f(x)=C-C=0; limh0f(x)=0; 2) f(x)=x; f(x)=x+h-x=h limh0h=0; 3)f(x)=xn, nN , -  xn=xn-1x; 4)f(x)=a0xn+a1xn-1++an- -; 5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1++an)/(b0xm+b1xm-1+..+bm)- , . 0 -.;6) f(x)=sinx xR, |sinx|<=|x| .(OB,ox)=x; (OB’,ox)=x 0<=x<=/2 ..  |BB’|<=BAB’ ; |BB’|=2Rsinx; BAB’{}=2Rx  2Rsinx<=2rx; sinx<=x ; -/2<=x<0 |sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=/2 |x|>/2  |sinx|<=1</2<|x| {} sinx- . |f(x)|=|sin(x+h)-sinx|=|2sinh/2cos(x+h/2)|<=2|sinh/2| limh0sinh/2=0 7.f(x)=cosx |f(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2| |h|0; 8)f(x)=ax ,a>=0 f=(ax+h-ax)=ax(ah-1) limh0ax(ah-1)=0; 9)f(x)=logax a>0 a1 (0,+) 10)arcsinx, arccosx . .

#14 { } {an} . 1+2+3n 12-  n 1- { } n lim(n)an=0 - an  lim(n)Sn=S=lim(n)S(n-1) lim(n)an = lim(n)(Sn-S(n-1)) = lim(n)Sn-lim(n)(Sn-1)=0 . { } - (n=1,)an   >0  n n>n  Z p>=0 /n+an+1+an+2+an+p/<; {} (n=1..)1/n( )  >1 <1 ; n<=n <=1  1/n+1/(n+1)++1/(2n-1)>=1/n+1/(n+1)++1/(2n-1)>1/2n+1/2n++1/2n=n/2n=1/2  =1/2  n  p=n-1 | - - |an++an+p|>  . >1, =2-1>0 S2k=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)++(1/(2k-1+1)+,,,+1/(2k)); 1/(n+1)+1/(n+2)++1/(2n)>1/n+1/n+1/n=n/n=1/n-1=1/n<1+1/2+1/2/(1-1/2)  {S2k} .. n k |n<2k  Sn2k .

#15 {- } +n=1an - - , . {} k=m+1+ak- . n=a1++an n- (1,+)an A’s=am+1++am+s s- k=m+1+ak, A’s=Am+s-Am .. limnaAn  limS+Am+S limS+A’S=lims+Am+S-Am  k=m+1+ak cx-c; k=m+1+ak - ; Am+S=AS’+Am; n=m+s  An=A’n-m+Am (n>m) .. lims+A’Slimn+A’n=m  limn+A=limn+An-n+Am  n=1+an . {} (1,+)an - n=(k=n+1,+)ak limn+n=0 {} An=(1,n)ak, A=limn+An  A=An+nn=A-A1  limn+n=A-limn+An=0 {} (n=1,+)an (n=1,+)bn - -, (n=1,+)(an+bn) - (n=1,+)an - {} n=(k=1,n)ak, Bn=k=1nbk; A=limn+An, B=limn+Bn; limn+(An+Bn)=A+B, limn+An=A .. An+Bn=(a1+b1)++(an+bn)- n- (n=1,+)(an+bn) An=a1++an- n- .

#16{T } 2 (n=1..)an (n=1..)bn n>=0 bn>=0 (n=1,2,3)  no n>no n  M>0 Bn (k=no+1..)ak - =>(k=1..)ak { } lim(n) an/bn =k ; 1).0<=k<+ bn an; 2).0 =1  no n>no an/bn an<(n+1)bn n>no => bn an => a 0<<=+ =/2 (<+) =1 =+  no n>no an/bn>k/2 (k<+) an/bn>1; k=+ => n>no n>(k/2)bn (k<+) => bn =>n => >bn (k=+)  .

#17{ ( )} an an>0 n=1,2,3 (n+1)/an <=q<1 (n=1,2,3) => q>=1 {-} n= a1*a2/a1*a3/a2an/a(n-1)<=a1qq=a1qn-1 q<1 .. (n=1,+)qn-1 c- => (n=1,+)n c- (n+1)/an >=1 => (n+1)>=an>=>=a1>=0 lim(n)an0 => { } : limn+an+1/an=k; 1)k<1 ; 2)k>1 . {-} k<1 >0 |k+<1 n0 | n>n0 an+1/ann=1+an -. k>1; k<+ >0 | k->1  n0 | n>n0 an+1/an>k->1  n=1+an { } an>0 n- (n)<=q<1 - n- (n)>1 {c}  lim( n- (n))=k; k<1 >1

#18 {O} n=1+(-1)n-1an, an>0{ } (-1)n-1 n cn>0; 1)C(n+1)<=C(n) n=1,2,3; 2)Lim(n)(Cn)=0 {-} c S2k : S2k=(c1-c2)+(c3-c4)++(c(2k-1)-c(2k)) .. S2k=c1-(c2-c3)--(c(2n-2)-c(2n-1))-c2n lim(k)S2k+1=lim(k)S2k=S; lim(n)Sn=lim(n)S2k = lim(k)S2k+1=S {- }

{ } 1-

#19n=1an |an|. an c |an| - . { } {} n=1+an -  n=1+|n| --  >0 n| n>n pZ p>=0 - -: |an+an+1++an+p|<=|an|++|an+p|<   n=1+an--.{- } {1} n=1+an , . {2} n=1+an n=1+bn aibi = an bn { } n=1+an . {1}|an-1|/|an| ; limn+|an-1|/|an|=k; k<1 n=1+an- k<1 n=1+an- k>1 n=1+an- {2} - n|an|; k=limn+ n|an|; k<1 n=1+an- k>1 n=1+an- .

#20{ } {} - zn=xn+iyn, n=1,2 z0=x0+y0 >0  n | n>n |zn-z0|< ; - zn=xn+iyn n 0 . yn 0. {-} z0=limnzn >0 n | n>n =|zn-z0|< .. |zn-z0|=((xn-x0)+(yn-y0)) |zn-z0|>=|xn-x0| |zn-zo|>= |yn-y0|  n>n . - |xn-x0|<=|zn-z0|< ; |yn-y0|<=|zn-z0|<  . limnXn=x0 limnyn=y0 {} - . {Zn}. . . {} zn=xn+iyn s=+i . (n=1,+)xn (n=1,+)n   - Sn=(k=1,n)xk+i(k=1,n)yk (n=1,+)zn limn+zn=0 {} zn=xn+iyn  .. (n=1,+)zn  (n=1,+)xn (n=1,+)n  limn+xn=limn+yn=0 limn+zn=limn+xn+ilimn+yn=0 . {} zn zn zn |zn| . . {} .{} (n=1,+)zn  (n=1,+)|zn| -  .. |xn|<=(xn+yn)=|zn|, |yn|<=|zn| (zn=xn+iyn)  (n=1,+)|xn| -c (n=1,+)|yn| -  (n=1,+)xn (n=1,+)n-  (n=1,+)zn c {} (zn=xn+iyn) , xn yn {} (n=1,+)|xn| (n=1,+)|n| |zn=(xn+yn)<= (yn+2|xn||yn|+yn) <= (|xn|+|yn|)=|xn|+|yn| (n=1,+)|zn| - c-.


#21{ } {O} f(x) . 0- - , 0; f'(x0)=limx0(f(x0+x)-f(x0))/x {O} A=const  . - f . 0 dy df(x);  dx .. dy=Adx {} - f(x) (.) x0 - (.) 0 {-} y=f(x0+x)-f(x0) ..  limx0y/x=f’(x0) y/x=f’(x0)+(x), (x) 0 0  y=f’(x0)x+(x), ()0 0  y=f’(x0)x+(x)x limx0y=0  f(x)- .0 {O}y=f(x)- U(x0) .0 =0 =f(x0+x)-f(x0), x0+xU(x0) =+(), 0{} , - y=f(x) , . {-} y=f(x) - 0  y =f(x0+x)-f(x0)= Ax+o(x), x0; limx0y/x= limx0(A+o(x)/x)=A; .. . 0 f’(x0)=limx0y/x=A {} - y=f(x) . 0 f’(x0)=limx0y/xy/x=f’(x0)+(x), limx0(x)=0  y=f’(x0)x +(x)x y=f’(x0)x+o(x), x0  - f- . 0

22 { } - y=f(x)- (a;b) x0, x0+x(a,b), y0=f(x0), y0+y=f(x0+x) M0(x0,y0) M(x0+x,y0+y){} MM0 - y=y0+k(x)(x-x0), k(x)=y/x; y=f(x) .(0) 0 0 |M0M|=(x+y)0 0 MM0 {}  limx0k(x)=k0 y=y0+k(x)(x-x0) - k(x)=y/x 0 - =f(x) (.) (0,0) .. k(x)=y/x, k0=limx0k(x)= limx0y/x=f’(x0)  y=y0+f’(x0)(x-x0) ; f’(x0)=tg; y=y0+k0(x-x0) ; y=y0+k(x)(x-x0)  M0M .. f’(x0)(x-x0)=dy dy=y-y0 - . .. - (.) 0 .{ .} - y=f(x) (.) (0,0) -. , , k=-1/f’(x0) ; y-f(x0)=-1(x-x0)/f’(x0) x y

#23 - U(x) V(x) (.) d(U+(-)V)=(U+(-)V)’dx=(U’+(-)V’)dx=U’dx+(-)V’dx=dU+(-)dV; 2)d(UV)=(UV)’dx=(U’V+V’U)dx=U’Xdx+V’Udx=Vdu+Udv; 3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V=(U'Vdx-V’Udx)/V=(Vdu-Udv)/V

24 { -.} Dh: : z=f(y) - . y0 ; y=(x) . 0 . y0=(x0) - z=f((x))- . 0 : z’x=z’yy’x=f’(y)’(x) ; dz/dx=dz/dy  dy/dx {}.. z=f(y) - . y0 z=f’(y0)y+(y); .. y=(x)- . 0 y=’(x0)x+(x); z=f’(y0)’(x0)x+f’(y0)(x)+(y); . y=(x) - . 0  (x0y0). (x)=f’(x0)(x)+(y); limx0/x; limx0(x)/x= limx0[f’(x0)(x)/x+(y)/x]= limx0(y)/x= limx0(y)/y limx0y/x=’(x0); (f((x)))=(f’(y0)’(x0))x+(x), limx0(x)/x=0 (f((x)))’x=z’x=f’(y0)’(x0)

#25 { -.} y=f(x) 0 : 1) f’(x)0, 2) , 0, - y=f-1(x)=(y) 3) y0=f(x0); (.) 0 f’()0, '(y0)=1/f’(x0). {-} x=(y) . xx0yy0x0 y0 y/x=1/y/x ; y=f(x) . x0 limx0y=0x0y0 f’(x0)=limx0y/x= limy01/y/x=1/limy0x/y=1/’(y0) ; f’(x0)0’(y0)=1/f’(x0)

#26 { } y=[u(x)]v(x),u(x)>0; lny=v(x)lnu(x); y'/y=v’(x)lnu(x)+v(x)u’(x)/u(x); y’=uv(v’lnu+vu’/u); (lny)’=y’/y- - { -} 1) y=Const y=c-c=0limx0y/x(C)’=0 ; 2) y=sinx y’=cosx 3)(cosx)’=-sinx 4) (ax)’=axlna 5)(arcsinx)’=1/1-x 6)(arccosx)’=-1/(1-x) 7) (arctgx)’=1/(1+x) 8) (arcctgx)’=-1/(1+x) 9) (lnx)’=1/x ; 10) (x)’=x-1

#27 { . }{} y=f(x); f(n)(x)=(f(n-1)(x))’ .. - y=f(x) (.) n- , (.) 0 n-1 , (.) 0 f(n-1)(x0) . n- - f {} n- } {} dnf(x)=d(dn-1f(x)) , dx dy=d(dy)=d(f’(x)dx)=df’(x)dx=f’’(x)dx; dny=f(n)(x)dxn ;f(n)=dny/dxn ) uv(n) = u(n)v + Cn1 u(n-1)v' +Cn2 u(n-2)v'' + +C1n u(n-k)v(k) + uv(n) =k=0nCkn u(n-k)v(k),( ), Cnk =n!/k!(n-k)! , 0! = 1, v(0) = v. (u + v)(n) = k=0nCkn u(n-k)v(k) - . .

#28 { } x=x(t), y=y(t) t0 t=t(x) x0=x(t0) - ()=(t(x)) . x(t) g(t) . 0 - ()=(t(x)) (.) 0 ’(x)=y’t(t0)/x’t(t0) - ’(x0)=y’t(t0)t’x(x0); t’x(x0)=1/x’t(t0) ((0)=y’t(t0)/x’t(t0) x’(t0)0 - x(t) g(t) x’’(t0) y’’(t0) ’’(x0) =(’(x))’x|x=0=(y’t/x’)’ x|x=x0=(y’t/x’t|t|t=t0t’x|x=x0=y’’tt(t0)x’t(t0)-y’t(t0)xtt’’(t0)/(x’t(t0))

#29 (). f(x) () , f’()=0. . , f(x) . f’(c)=limx(f(c+x)-f(c))/x ; f(c)>=f (x) xU(), x> 0 ;(f(c+x)-f(c))/x x0 , f’()<=0. x<0, (f(c+x)-f(c))/x>=0 , x0 , , f’()>=0. , f'(c)=0.

#30 (). y=f(x) [, b], (, b) f () ==f(b), c0(,b), , f'(c)=0. . f [, b], c(a, b) f'(c)=0.

, f [, b]. f [, b], x1 [, b], f [, b] 2[, b], f [, b]. [,b], maxf(x)=minf(x)=f(a) =f(b) f [, b]. , x1,2 (, b). c. . , f'(c) , f'(x) (, b). f’(c)=0.{} . , y=f(x) (c,f(c)) .

#31 (). f(x) [, b] (,b). (, b) , (f(b)-f(a))/(b-a)=f'(c) (< tg=k=(f(b)-f(a))/(b-a)  . . . - F(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a) - , .. [a,b] f(x) (x-a) (a,b) F’(x)=f’(x)-(f(b)-f(a))/(f-a) x(a,b) F(a)=0=F(b)   (a,b) | F’(c)=0  f(c)-(f(b)-f(a))/(b-a)=0

, (f(b)-f(a))/(b-a)=f’(c) (a<c<b) , (a, f(a)) (b,f(b)) y=f(x), (, b). , [, b] , (a, b), , ( < < b) , , (, f()) (b, f(b))

#32(). f(x) g(x) [, b] (, b), g'(x)0 (, b), c(a, b) , ( f(b)-f(a))/(g(b)-g(a))=f’(c)/g’(c)

. , g(b)-g(a)0, , g , g'(c)=0, . F(x)=f(x)-f(a)-(f(b)-f(a))(g(x)-g(a))/(g(b)-g(a)) F [, b], (, b) F(a)=0, F(b)=0. , , c(a, b), F'(c)=0 F’(x)=f’(x)-(f(b)-f(a))g’(x)/(g(b)-g(a)) , c, .

#33( ) 1)- f(x) g(x) (a,b] ;2) limxa+0f(x)=limxa+0g(x)=0; 3) () f’(x) and g’(x) (a,b] y’0 ; 4) ( ) limxa+0f’(x)/g’(x)=k limxa+0f(x)/g(x)=k {-} - f(x) g(x) x=a f(0)=g(0)=0 ; [a;b] - (.. .a f g , ) . f(x)/g(x)=(f(x)-f(a))/(g(x)-g(a)=f’(c)/g’(c); axa+0f(x)/g(x)= limxa+0f’(x)/g’(x)=k {}{T2} 1)f,g [c;+) c>0 ; 2) limx+f(x)=limxa+g(x)=0; 3)() f’(x) and g’(x) [c,+) g’(x)0 ;4) limxa+f’(x)/g’(x)=k limxa+f(x)/g(x)=k {} t=1/x, x+t0 2) limt0f(1/x)= limt0g(1/x)=0 ; 4) limt0f’(1/t)/g’(1/t)=k  1 limxa+f(x)/g(x)= limxa+f’(x)/g’(x)=k {}{T3}1)- f(x) g(x) (a,b] ;2) limxa+0f(x)=+; limxa+0g(x)=+; 3) () f’(x) and g’(x) (a,b] y’0 ; 4) ( ) limxa+0f’(x)/g’(x)=k limxa+0f(x)/g(x)=k

#34 - {} - y=f(x) (a,b) .(a,b) n f’(x),f’’(x),,f(n)(x); f(x)=f(x0)+f’(x0)(x-x0)/1!+ f’(x0)(x-x0)/2!++ f(n)(x0)(x-x0)(n)/n!+o((x-x0)n)- . f(x)=f(x0)+f’(x0)(x-x0)/1!+ f’(x0)(x-x0)/2!++ f(n)(x0)(x-x0)(n)/n!+f(n+1)(c)(x-x0)n+1/(n+1)!- . Pn(x)=f(x0)+f’(x0)(x-x0)/1!++f(n)(x0)(x-x0)n/n!-- n, - rn(x)=f(x)-Pn(x)- - ; =0 - . {} Pn(x)=A0+A,(x-x0)n ;Pn(x0)=f(x0), Pn’(x0)=f’(x0),,Pn(n)(x0)=f(n)(x0) (1) Pn(x)=A0+a1(x-x0)++An(x-x0)n;Pn(x0)=f(x0),Pn’(x0)=f’(x0),,Pn(n)(xn)=f(n)(x0); Pn’(x)=A1+2A2(x-x0)++nAn(x-x0)n-1 ; P’’n(x)=2A2+32A3(x-x0)+.+n(n-1)An(x-x0)n-2 ;Pn(n)=n(n-1)(n-2)An; P(x0)=A0=f(x0); Pn(x)=f(x0)+f’(x0)(x-x0)/1!+fn(x0)(x-x0)/2!++f(n)(x0)(x-x0)n/n!; Pn(x0)=f(x0), Pn’(x0)-f’(x0),,Pn(n)(x0)=f(n)(x0) ; rn(x)=f(x)-Pn(x) .. rn(n-1)(x) - () x0 limxx0rn(n-1)(x)/(x-x0)= limxx0 (rn(n-1)(x))-rnn-1(x0)/(x-x0)=rnn(x0) limxx0rn(x)/(x-x0)n= limxx0rn’(x)/n(x-x0)n-1== limxx0rn(n-1)(x)/n!(x-x0)=rn(n)(x)/n!=0 rn(x)=o((x-x0)n),xx0

#35 - . 1)f(x)=ex, f(0)=1, f(k)(x)=ex, f(k)(0)=1, ex=1+x+x/2!++xn/n!+o(xn), x0; 2)f(x)=sinx, f(0)=0, f’(x)=cosx, f’’(x)=-sinx, f’’’(x)=-cosx, f(IV)(x)=sinx,; f(k)(x)={(-1)msinx, k=2m {(-1)m-1cosx, k=2m-1 m=1,2,; f(2m-1)(0)=(-1)m-1 n=2m sinx=x-x3/3!+x5/5!-+(-1)n-1x2m-1/(2m-1)!+o(x)2m,x0; cosx=1-x/2!+x4/2!-x6/6!+.+(-1)mx2m/(2m)!+o(x2m+1),x0; 4)f(x)=ln(1+x)f(0)=ln1=0, f’(x)=1/(1+x), f’’(x)=-1/(1+x), f’’’(x)=2/(1+x)3,f(k)(x)=(-1)k-1(k-1)/(1+x)k ;f(k)(0)=(-1)k-1(k-1)!  l(1+x)=x-x/2+x3/3+..+(-1)n-1xn/n+o(xn),x0 ; 5)f(x)=(1+x) f(0)=1, f’(x)=(1+x)-1, f’’(x)=(-1)(1+x)-2; f(k)(x)=(-1)(-k+1)(1+x)-k ;f(k)(0)=(-1)(-k+1); (1+x)=1+x+(-1)x/2!++(-1)(-n+1)xn/n!+o(xn), x0

#36 -. {} - f(x) (a,b), , - () f’(x)>=0 (f’(x)<=0) f’(x)>0 (f’(x)<0), - () (a;b) {} f- () x0(a,b), x>0, f(x0+x)-f(x0)>=0; x0; (y<=0)  y/x>=0 (y/x<=0)  f’(x0)=limx0y/x>=0 (f’(x0)<=0); {}  x(a,b) f’(x)>=0 (f’(x)<=0) a0, f’(c)>=0 (f’(c)<=0) f(x2)-f(x1)>=0 (f(x2)-f(x1)<=0) f(x2)>=f(x1) (f(x2)<=f(x1))  - () f’(x)>0 x(a,b) (f’(x)<0,x(a,b))f’(c)>0 (f’(c)<0)f(x2)-f(x1)>0 (f(x2)-f(x1)<0)

#37{} () x0 - f(x), =0 . {} .. (.) x0   U(x0,) |  xU(x0,) f(x)>=f(x0) f(x)<=f(x0) .. (.) x0 - y=f(x) .U(x0,) =0 {} : - y=f(x) (.) x0 0 . 0 - (..  >=0 |  x(x0,x0+] f’(x)<0 (or f’(x)>0),  x(x0-,x0] f’(x)<0 (or f”(x)>0) 0 x(,x0+); f’(x)>0,a x(x0-,x0) f’(x)<0 x0 , x(x0-,x0) f’(x)<0, x(x0,x0+) f’(x)>0 xo-. {} x(x0-,x0) f’(x)>0 x(x0,x0+) f”(x)<0. f=f(x)-f(x0)=f’()(x-x0)  0 >x0  x-x0>0 x0<0f>0  f(x)

#38 y=f(x) - () x1,x2 X - f(q1x1+q2x2)<=q1f(x1)+q2f(x2) (f(q1x1+q2x2)>=q1f(x1)+q2f(x2)),  q1>0,q2>0, q1+q2=1 : x=q1x1+q2x2 (x10,q2>0, q1+q2=1 . 1 2{-} (x-x1=q1x1+q2x2-x2=x1(q1-1)+q2x2=-x1q2+q2x2=q2(x2-x1)>0x>x1x2-x=x2-q1x1-q2x2=x(1-q2)-q1x1=x2q1-q1x1=q2(x2-x1)>0x1=)(f(x2)-f(x))/x2-x1) (1) {1} f(x) . . . . . . ()  f’(x)- () {-} - 1<<2 - (1) - 1 2 f’(x1)<=(f(x2)-f(x1))/(x2-x1) xx1 (f(x2)-f(x1))/(x2-x1)<=f’(x2) xx1 f’(x)<=f’(x2) {} . . (f(x2)-f(x1))/(x2-x1)=f’() .. (f’(1)<=f’(2)  - 1  - . {} - y=f(x) () , - ( ) X , - f’’(x)>=0 (f’’(x)<=0) {} f-()  f’ ()  f’’<=0 (f’’>=0) {(.) } y=f(x) (.) x0 y=e(x)-- - =f(x) (.) 0. (.) 0 f(x)-e(x)- (.) 0 . {T} . 0 - f(x) , 0 {} - y=f(x) . 0 L(x)=f(x0)+f’(x0)(x-x0) - f(x) . . 0 : f(x)=f(x0)+f’(x0)(x-0)+f’’(x0)(x-x0)/2!+(x)(x-x0), (x)0 xx0 ; f(x)-L(x)=(f’’(x0)+2(x))(x-x0)/2! ; f’’(x)0 .. ()0 0 . . 0 f’’(x)  . 0 f(x)-L(x) , . 0 ,  f’(x0)=0 {} (.) : - y=f(x) (.) 0 U(x0,) (.) 0 f’’ , .{-} f(x)-L(x)=f(x)-f(x0)-f’(x0)(x-x0)=( ;  0) =f’()(x-x0)-f’(x0)(x-x0)=(  /  0)=(x-x0)(f’()-f’(x0))=(x-x0)(-x0)f’’(); .. -  0 -  . 0 (-0)(-0)>0 f(x)-L(x) f’’(); .. .   0 -  . 0  . 0 f(x)-L(x)-  0-. .

#39 : - y=f(x) >A=const - f(x) x>A. L: - : y=ax+b. (x,f(x)) L 0 , + -{} L (x)=|f(x)-ax-b|/(1+a) .. L limx+(x)=0 limx+(f(x)-ax-b)=0 limx+(f(x)/x-a-b/x)=0 limx+(f(x)/x-a)=0 a= limx+f(x)/x ; b= limx+(f(x)-ax). limx+f(x)/x lim + . = b y=ax+b . {} - y=f(x) . 0 - limx0-0f(x)= limx0+0f(x)= =0 .

#40 {O} - F(x) - f(x) - F’(x)=f(x) {T} - F(x) (x) - f(x) const {-} F(x) f(x) F’(x)=f(x) (F(x)+c)’=F’(x)=f(x)F(x)+c- f(x) F(x) (x) f(x) - ()=F(x)-(x) ’(x)=F’(x)-’(x)=f(x)-f(x)=0 1,x2X  (2)-(1)=’(c)(x2-x1)=0 . (x2)=(x1) (x)=c=const {T} F1(x) F2(x)- f(x) (a,b), F1(x)-F2(x)=C (a,b), C- .

#41 {O} - f(x) - - f(x) f(x)dx ; F(x)- f(x) f(x)dx=F(x)+C; {C-} 1) - F(x) , F’(x)dx=F’(x)+C; 2) - f(x) d(f(x)dx)=f(x)dx; 3) f1 and f2 - f1+f2 (f1(x)+f2(x))dx=f1(x)dx+f2(x)dx {} F1(x)- f1(x), F2(x)- f2(x), F1(x)+f2(x)- f1(x)+f2(x), .. (F1(x)+F2(x))’=F1’(x)+F2’(x)= f1(x)+f2(x); 5) F(x) f(x), f(ax+b)dx=1/aF(ax+b)+C {} [1/aF(ax+b)]’=1/aaF’(ax+b)=f(ax+b);

#42 : f(x) =(t) - t, f(x)dx=f((t))’(t)dt+C=f((t))d((t))+C-- . { } - U(x),V(x) U(x)V’(x)dx V(x)U’(x)dx=U(x)V(x)-U(x)V’(x)dx - . {-} .. - U(x) V(x) (UV)’=U’V+UV’U’V=(UV)’-UV’; .. UV’dx  (UV)’dx=UV+C U’Vdx=(UV)’dx-UV’dx=UV-UV’dx+C  U’Vdx=UV-UV’dx; exsinxdx=exsinx-excosxdx=|U’(x)=ex V’(x)=sinx|=exsinx-(excosx-exsinxdx); exsinxdx=exsinx-excox-exsinxdx; 2exsinxdx=exsinx-excosx exsinxdx=(exsinx-excosx)/2

#43 n n Pn(z)=A1(z-z1)k1(z-zs)ks, k1++ks=n; - - Pn(z)Pn(z)=(z-a)mQn-m(z) a- - m Pn(z); Pn(x)- , Pn(x)Pn(x) xR : Pn(x) . .. (z-a)(z-a)  Pn(x)=(x-a1)1(x-ar)r(x-z1)1(x-zs)bs(x-zs)s=(x-a1)1(x-ar)r(x+p1x+q1)1(x+psx+qs)s; Pj/4-qj<0, j=1,,s; a1,,arR, Pj,qjR {} Px Qx , degP(x)mQ1(x), Q1(a)0 P1(x) ,AR , P(x)/Q(x)=A/(x-a)m+P1(x)/(x-a)m-1Q1(x) {} P(x) Q(x) , degP(x)mQ1(x), Q1(z1)0, p/4-q<0; M NR . . P1(x) P(x)/Q(x)=(Mx+N)/(x+px+q)m+P1(x)/(x2+px+q)m-1Q1(x); M N : P(x)/Q(x)=(Mx+N)/x+px+q)m+P(x)/Q(x)-(Mx+N)/(x+px+q)m=(Mx+N)/(x+px+q)m+(P(x)-(Mx+N)Q1(x))/(x+px+q)mQ1(x) {T} P(x) and Q(x) degP(x)1(x-ar)r(x+p1x+q)(x+psx+qs)ps, a1,,arR,p1q1..psqsR, Pj/4-qj<0, j=1,,s ; Ai(j), I=1,..,r; j=1,,I Mi(j),Ni(j), I=1,,s ; j=1,,I; P(x)/Q(x)=A1(1)/(x-a1)1+..+A1(1)/(x-a1)++A2(1)/(x-a2)2++A2(2)/(x-a2)2+(M1(1)x+N1(1))/(x+p1x+q1)1++(M1(1)x+N1(1))/(x+p1x+q1)++(Ms(1)x+Ns(1))/(x+ps+qs)s++(Ms()x+Ns(s))/(x+psx+qs). ; {}  1.Adx/(x-a)=Aln|x-a|+C ; 2.Adx/(x-a)m=A(x-a)-mdx=A/(1-m)(x-a)m-1+C 3.(Mx+N)dx/(x+px+q)=(M/2)ln(x+px+q)+(N-MP/2)(1/a)arctg(x+P/2)/a+C 4.(Mx+N)dx/(x+px+q)m=M/2(1-m)(x+px+q)m-1+(N-MP/2)dt/(t+a)m


#44 - R(x,m(ax+b)/(cx+d) . t=m(ax+b)/(cx+d) . tm=(ax+b)/(cx+d); x=(b-dtm)/(ctm-a) - t; dx=(mtm-1(ad-bc)dt)/(ctm-a)  R(x,m(ax+b)/(cx+d))dx=R((b-dtm)/(ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)=R1(t)dt. R1(t)-.{} R(x,ax+bx+c)dx, - , b, c . ax+bx+c 1 2 ax+bx+c=a(x-x1)(x-x2) R(x,ax+bx+c)=R(x,(x-x1)(x-x2)a/(x-x1)=R1(x,(x-x2)/(x-x1) ; ax+bx+c >0. () t=(ax+bx+c) +xa ax+bx+c=t-2xta+ax; x=(t-c)/2t(a)+b - t .. ; <0 >0 (ax+bx+c)>=0) ax+bx+c=xt+c {}{}

#45 R(cosx,sinx); R(cosx,sinx)dx t=tg(x/2) (-R(x, ) , , . R(u,v)=P(u,v)/Q(u,v) (u=cosx, v=sinx). P Q u v. 1) P Q v, a , t=cosx . 2) , Q , , t=sinx . 3) Q: ) , v , v ) , t = tg x ( t=ctgx).

#46 {O} [a,b] - xi, I=0,1,,i x0=a(f,1,,i)=I=1if(I)x; - {} I  - y=f(x) [a;b] abf(x)dx  E >0 E=(E)>0 |  ||<E (.) i[xi-1,xi], I=1,,i | I=1if(i)x-I |  ||0 {T} - . [a,b] {-} - y=f(x) [a,b] . .  [a,b] . . .[xj0-1,xj0]  {njo}>0 | limnf(njo)= =I=1if(I)xi=f(io)xjo +I=1if()xi=f(jo)xjo+B i[xi-1,xi] ijo lim(f,1,,0n,..,i)=lim(f(jo)xjo+B)= m>0 n0 | (f,1,,jo(n),,i)>m , ||0 . ,  I=lim||0E>0 E>0 | , ||<E i - |-I||=|-I+I|<|-I|+|I| E 1,..,i , ||>M - [a,b]. ...

#47{O} - y=f(x) (.) a f(x)dx=0, - y=f(x) .[a,b] baf(x)dx=-abf(x)dx {-1} abdx=b-a - f(x)1 [a,b]  (.) i f(i)=1=i=1if(i)xi=i=1ix1=(x1-x0)+(x2-x1)+(x3-x2)++(xi-x-1)=xi-x0=b-a  lim||0=b-a {-2} f,g [a,b] , - f+g [,b] : ab(f(x)+g(x))dx= abf(x)dx+ abg(x)dx {} ={xi} i=i i=o i[xi-1,xi] , E(f+g)=i=1i(f(i)+g(i)xi=ii=1f(i)xi+ii=1g(i)xi=(f)+(g) .. f g - [a,b] lim||0(f)=abf(x)dx; lim||0(g)=abg(x)dx ; lim||0(f+g)=abf(x)dx+abg(x)dx .. - f+g - [a,b] ab(f(x)+g(x))dx=lim||0(f+g)=abf(x)dx+abg(x)dx {- 3} - y=f(x) [a,b]  - f(x) - [a,b] abf(x)dx=abf(x)dx {- 4} aabf(x)dx=af(x)dx+bf(x)dx {-5} y=f(x) [a,b] [c,d] [a.b] . {-6} - f g [a,b] - f-g [a,b] {- 7} f(x) - - [a,b] inf|f(x)|>0 ( M>0 |  x[a,b] |f(x)|>M) 1/f(x) - [a,b] {-} f(x) -- [a,b] [a,b] f(x)0  abf(x)dx0

#48 {T } 1) f g [a,b]; 2) m<=f(x)<=M, [a,b]; 3) .[a,b] - g(x) . .. ,  | mM abf(x)g(x)dx=abg(x)dx {-} .. [a,b] mf(x)M - g(x) mg(x)f(x)g(x)Mg(x) g(x)0; mg(x)f(x)g(x)Mg(x) g(x)0; .. f g [a,b] - mabg(x)dxabf(x)g(x)dxMabg(x)dx g(x)0; mabg(x)dxabf(x)g(x)dxMabg(x)dx g(x)0; abg(x)dx=0 - : abf(x)g(x)dx=0  - abf(x)g(x)dx=abg(x)dx ; abg(x)dx0  g(x)0 abg(x)dx>0, g(x)0 abg(x)dx<0; - abg(x)dx : mabf(x)g(x)dx/abg(x)dxM; =abf(x)g(x)dx/abg(x)dx  abf(x)g(x)dx=abg(x)dx {} - y=f(x) [a,b] [a,b] , abf(x)g(x)dx=f()abg(x)dx

#49 - y=f(x) [a,b] [a,x] axb -   F(x)= axf(t)dt, x[a,b] - F(x) {T1} - y=f(x) [a,b], F() [a,b]. {-} x[a,b] x+x[a,b] : F=F(x+x)-F(x)= ax+xf(t)dt-axf(t)dt; .. - y=f(x) [a,b]  C>0. |f(x)| x[a,b]|F|=|xx+xf(t)dt|| xx+xdt|=|x| limx0F=0 - . ... {T2} y=f(x) [a,b] x0 [a,b]  F(x)= axf(t)dt (.) 0[a,b] F’(x0)=f(x0) {-} x0+x[a,b] F=F(x0+x)-F(x0)= ax+xf(t)dt- ax0f(t)dt= ax0f(t)dt+ x0x+xf(t)dt- ax0f(t)dt= xx0+xf(t)dt |F/t-f(x0)|=|1/x|, x0x0+xf(t)dt-f(x0)/x=|1/x  x0x0+x (F(t)-f(x0))dt|1/|x|| x0x0+xf(t)-f(x0)dt .. - f(x) 0 E>0  >0 ||x-x0|<E|f(x)f(x0)|Et 0 0+ - |t-x0||x|+ |F(t)-f(x)| x0x0+x(f(t)-f(x0))dt<1/|x|E xx0+xdt|=E  limx0F/x=f(x0)F’(x0)=f(x0) ...

50 - - abf(x)dx=(b)-()=()|b (1) {T} ( ) - y=f(x) [a,b] ()- .  (1) {-} F(x)= axf(t)dt - F(x) (x) f(x) [a,b]  F(x)=()+; axf(t)dt=()+ x=a af(t)dt=0  0=()+ =-() axf(t)dt=()-() x=b (1) ...

#51{ } 1)f(x) [a,b]; 2)x=(t) [a,b]; 3) ()=a ,()=b ;4)t[;] (t)[a,b]; abf(x)dx = abf((t))’(t)dt {-} [,] - f((t)); F(x)- f(x) [a,b] F((t)), - f((t))’(t) [,] - abj(x)dx = abj((t))’(t)dt  . - : abf(x)dx =F(b)-F(a); abf((t))’(t)dt =F(())-F(())=F(b)-F(a)= abf(x)dx ... { } u(x) v(x) [a,b] abu’(x)v(x)dx=u(x)v(x)|ba- abu(x)v’(x)dx {-} u(x)v(x) [a,b] (u(x)v(x))’=u(x)v’(x)+u’(x)v(x) - u(x)v(x)|ab= ab (u(x)v’(x)+u’(x)v(x))dx= abu(x)v’(x)dx+ abu’(x)v(x)dx  abu’(x)v(x)dx=u(x)v(x)|ba- abu(x)v’(x)dx

#52( ) R; R - .; , R, . A-A B-B ; d- , d0 AB  , - , ; - f(x) [a,b] f(x)0 x[a;b] x=a, x=b. ={xi}i=0i=i- [a,b]; gi={(x,y), x[xi-1,xi], 0ymi=inff(x)} Gi={(x,y), x[xi-1,xi], 0yMi=supf(x)}; Sg=i=1imixi; SG=i=1iMixi {T} , - f(x) [a,b] . : lim||0(Sg-SG)=0 {} .. - f(x) [a,b] .  lim||0SG= lim||0Sg=S= abf(x)dx {} r=f(), f() [,] f()0 [,] {} - gi={(,r), [i-1,i], 0rmi=inff()} Gi={(,r), [i-1,i], 0rMi=supf()} .. - f(x)- [,]  gi=mi/2 Gi=Mi/2; Sg=1/2i=1imi SG=1/2i=1iMi  lim||0SG= lim||0Sg=S=1/2 f()d P- Sp=1/2 f()d.


#53 y=f(x) [a,+)  [a;b]  [a,+) - f(x) a+f(x)dx=limb+ abf(x)dx. , a+f(x)dx , , . {} [a,+)  abf(x)dx= acf(x)dx+ cbf(x)dx {} - a+f(x)dx c  limb+ abf(x)dx {} (2) , : E > 0 b0 < b0 < b, , |F(b’’)-F(b’) b' b", b0 < b' < b" < b. F(b’’)-F(b’)=bb’’f(x)dx  . {O} (a;b] - f(x) abf(x)dx= lima+0 abf(x)dx.  , . {} af(x)dx bf(x)dx aabf(x)dx- . {-} f(x) [a,b) . a<abf(x)dx= limb-0 F()-F(a)=F(x)|baabf(x)dx  limb-0 F() {} a<abf(x)dx=F()-F(a)  - abf(x)dx= limb-0 F()-F(A){2} abf1(x)dx abf2(x)dx -, ab (f1(x)+ abf2(x))dx= abf1(x)dx+ abf2(x)dx {} a<a (f1(x+f2(x))dx= a f1(x)dx+a f2(x)dx .. . limb-0a f1(x)dx limb-0a f2(x)dx  - . {3} f(x)<=g(x), x[a,b] b abf(x)dx, abg(x)dx , abf(x)dx<= abg(x)dx {} a< af(x)dx<= ag(x)dx - limb-0 {4} u(x) v(x) [a,b)  abu(x)v’(x)dx=u(x)v(x)|ba- abu’(x)v(x)dx {} a<au(x)v’(x)dx = y(x)v(x)|a - au’(x)v(x)dx  - 3- ; - . .; {5} f(x) [a,b), x=(t) [,) , <=t< a<=(t)tb-0(t) : abf(x)dx= f((t))’(t)dt {} [,) .. - [,) . [,] [a,()]   .

#54 f(x) [a,b) -+ {T1} f(x)0 x[a,b) [a,]. abf(x)dx , af(x)dx, a<0 | af(x)dxabg(x)dx- ,  abf(x)dx abg(x)dx  abf(x)dx . {-} .. f(x)=O(g(x)), xb-0  (.) . .. abg(x)dx  abf(x)dx  1,(0,b) 0g(x)dxM(M=const)   x(0,b) h0hf(x)dxC h0hg(x)dxCM  h0hf(x)dx , 1 h0bf(x)dx-abf(x)dx ; abf(x)dx- abg(x)dx- { } - [a,b) f(x),g(X)0  limxb-0f(x)/g(x)=k, 1) 0k<+ abg(x)dx  -abf(x)dx; 2) 0abg(x)dx  -abf(x)dx; 0k<+ abg(x)dx abf(x)dx .{-} 1. 0k<+ E=1 (0,b) |  x(0,b) |f(x)/g(x)-k|abg(x)dx , abf(x)dx-. 2) 01 k=+ |f(x)/g(x)-k|k/2  g(x)<2f(x)/k; g(x)=O(f(x)), xb-0  2  abg(x)dx abf(x)dx .

#55abf(x)dx- . ab |f(x)|dx abf(x)dx- , ab |f(x)| dx abf(x)dx- . {} . , ab |f(x)| dx , E>0 (, b) b0 , b0 < b' < b" < b, E> bb’’ |f(x)| dx| bb’’ f(x)dx . . abf(x)dx . |abf(x)dx| ab|f(x)| dx b'b ab f(x)dx |ab f(x)dx| ab |f(x)| dx { } - y=f(x) . -+f(x)dx v.p. +f(x)dx=lim+ -+f(x)dx; + . . - f(x) . [a,c-E],[c+E,b], E>0 . . .  v.p. abf(x)dx=limE0 (aC-Ef(x)dx +C+Ebf(x)dx)

#56 { } f(x) , [1;+) (n=1,+)f(n) 1+f(x)dx {-} .. - [1,+) [1,][1,+)  .. - [1,+) =1,2,3 f(k)>=f(x)>=f(k+1), k<=x<=k+1  kk+1f(x)dx>=kk+1f(k+1)dx  f(k)>= kk+1f(x)dx>=f(k+1)  (k=1,n)f(k){=Sn}>=(k=1,n){= 1n+1f(x)dx} kk+1f(x)dx>=(k=1,n)f(k+1){=Sn+1-f(1); Sn>= 1n+1f(x)dx>=Sn+1-f(1) ; 1+f(x)dx  M>0 | [1;+) 1f(x)dx<=M  Sn+1-f(1)<= 1n+1f(x)dx<=M  Sn+1<=M+f(1) n; -  ; , n=1,2,3 1n+1f(x)dx<=Sn<=M n .. [1,+) n  N | <=n 1nf(x)dx<= 1f(x)dx+ n+1f(x)dx= 1n+1f(x)dx<=M .. 1  f(x)dx , 1+f(x)dx-.

1. n- Rn. . . Rn.

2. . , , .

3. . . .

4. . , . .

5. . . . ( } f(), . .

6. . . .

7. .

8. . . .

9. . . . - .

10. . .

11. .

12. .

13. .

14. . , . . .

15. .

16. . .

17. .

18. . .

19. . . .

20. .

21. . . .

22. . .

23. , .

24. .

25. .

26. . .

27. . .

28. .

29. . .

30. . .

31. . .

32. .

33. .

34. .

35. .

36. .

37. . .

38. .

39. .

40. .

41. .

42. . .

43. . .

44. .

45. .

46. .

47. ,

48. .

49. . .

50. -

51. .

52. . 53. . .

54. . .

55. . .

56. .


03-112 - 116. 1. n- Rn. . . Rn. 2. .

 

 

 

! , , , .
. , :