База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Статистические наблюдения по валовому региональному продукту автономных образований России — Экономика

Задание №1

Объект исследования: – 30 автономных образований России

1.  Цель статистического наблюдения – собрать сведения о 30 автономных образований по валовому региональному продукту (ВРП), общей численности населения, численности занятого населения, стоимости основных фондов (ОФ) по каждому из объектов.

2.  Избранным объектом наблюдения являются автономные образования России, единицей измерения является регион.

3.  Программа наблюдения включает в себя:

– единовременно получить информацию из статистического сборника «Россия в цифрах» из Интернет по 30 обследуемым объектам по состоянию на 1 января 2001 года по валовому региональному продукту (ВРП), общей численности населения, численности занятого населения, стоимости основных фондов (ОФ).

4. Инструментарий наблюдения – формуляр обследования, включающий наименование региона и данные по каждому региону.

5. Макет статистической таблицы:

Таблица 1. Сведения об автономных образованиях по валовому региональному продукту (ВРП), общей численности населения, численности занятого населения, стоимости основных фондов (ОФ) на 1 января 2001 года

№ п/п Регион ВРП, млн. руб. Общая числ, тыс. чел. Числ., занят., тыс. чел. Ст-ть ОФ, млн. руб.

Задание №2

Таблица 2. Данные из регионального справочника «Россия в цифрах» (по данным на 1 января 2001 года)

№ п/п Регион ВРП, млн. руб. Общая числ, тыс. чел. Числ., занят., тыс. чел. Ст-ть ОФ, млн. руб.
1 Адыгея 5110.2 446 156.8 47056
2 Башкирия 114145.1 4101.7 1746.2 407013
3 Алтай 2568.1 204.8 84.3 15278
4 Бурятия 18085 1026.3 395.5 91700
5 Дагестан 13043.6 2160.3 737.8 134133
6 Кабардино-Балкария 10529.8 783.9 303.7 48059
7 Калмыкия 2127.1 314.3 117.4 21677
8 Карачаево-Черкесия 4317.5 430.7 139.4 32493
9 Карелия 20382.3 760.6 343.1 90800
10 Коми 50914.3 1126.1 499.2 201201
11 Марий-Эл 10467.7 755.2 333.4 95617
12 Мордовия 14075.5 919.7 404.9 70373
13 Сев. Осетия 7572.3 677 227.2 43296
14 Татарстан 123671.8 3776.8 1694 477390
15 Тува 2616.3 310.7 99.2 14652
16 Удмуртия 37501.6 1623.8 767.8 180173
17 Хакасия 14317.1 578.3 241 61889
18 Ингушетия 2030.7 460.1 59.4 5139
19 Эвенкийский а. о. 129456,9 18,5 9,9 1842
20 Чувашия 18372.1 1353.4 610.4 113170
21 Якутия-Саха 64688 986 471.7 220865
22 Еврейская а.обл. 2443.5 195.6 71.2 20746
23 Агинский-Бурятский а 22160.9 79.3 26.3 3742
24 Коми-Пермяцкий а.о. 94893.9 149.1 58.7 6370
25 Корякский а.о. 15462.2 29.1 16.6 5497
26 Ненецкий а.о. 38994.1 45 21.4 17633
27 Таймырский а.о. 129456.9 43.7 22.2 5400
28 Усть-Ордынский а.о. 85889.1 143 62.5 6335
29 Ханты-Мансийский а.о 356139 1401.9 792 641474
30 Чукотский а.о. 3212.1 75.3 32.7 18712

Решение

1. Количество групп равно 1+ 3,322lg30 = 1 + 3,322 х 1,48 = 4,4

Принимаем число групп =5

Величина интервала равна (356139 – 2030,7) / 5 = 70821,7

Сгруппируем предприятия по размеру Валового регионального продукта (ВРП) в группы с интервалами 2030,7–72852,4; 72852,4–143674,1; 143674,1–214495,8; 214495,8–285317,5; 285317,5–356139.

2. Расчеты по каждой группе произведем в таблицах 3–5

Показатели по группам

Таблица 3. Группа №1

№ п/п Валовой региональный продукт, млн. руб. Уд. Вес, % Общая численность населения, тыс. чел Уд. Вес, % Численность занятого населения, тыс. чел Уд. Вес, % Стоимость основных фондов, млн. руб. Уд. Вес, %
1 2030.7 0,5 460.1 3,0 59.4 0,9 5139 0,4
2 2127.1 0,6 314.3 2,1 117.4 1,9 21677 1,4
3 2443.5 0,7 195.6 1,3 71.2 1,2 20746 1,3
4 2568.1 0,7 204.8 1,3 84.3 1,4 15278 1,0
5 2616.3 0,7 310.7 2,0 99.2 1,6 14652 0,9
6 3212.1 0,8 75.3 0,5 32.7 0,5 18712 1,2
7 4317.5 1,1 430.7 2,8 139.4 2,3 32493 2,1
8 5110.2 1,3 446 2,9 156.8 2,5 47056 3,0
9 7572.3 2,0 677 4,4 227.2 3,7 43296 2,8
10 10467.7 2,7 755.2 4,9 333.4 5,4 95617 6,2
11 10529.8 2,8 783.9 5,1 303.7 4,9 48059 3,1
12 13043.6 3,4 2160.3 14,1 737.8 12,0 134133 8,6
13 14075.5 3,7 919.7 6,0 404.9 6,6 70373 4,5
14 14317.1 3,8 578.3 3,8 241 3,9 61889 4,0
15 15462.2 4,1 29.1 0,2 16.6 0,3 5497 0,4
16 18085 4,8 1026.3 6,7 395.5 6,4 91700 5,9
17 18372.1 4,8 1353.4 8,8 610.4 9,9 113170 7,3
18 20382.3 5,3 760.6 5,0 343.1 5,6 90800 5,8
19 22160.9 5,8 79.3 0,5 26.3 0,4 3742 0,2
20 37501.6 9,8 1623.8 10,6 767.8 12,5 180173 11,6
21 38994.1 10,2 45 0,3 21.4 0,3 17633 1,1
22 50914.3 13,4 1126.1 7,3 499.2 8,1 201201 13,0
23 64688 17,0 986 6,4 471.7 7,7 220865 14,2
Итого 380992 100,0 15341,5 100,0 6160,4 100,0 1553901 100,0

Таблица 4. Группа №2

№ п/п Валовой региональный продукт, млн. руб. Уд. Вес, % Общая численность населения, тыс. чел Уд. Вес, % Численность занятого населения, тыс. чел Уд. Вес, % Стоимость основных фондов, млн. руб. Уд. Вес, %
1 85889,1 12,7 143 1,8 62,5 1,7 6335 0,7
2 94893,9 14,0 149,1 1,8 58,7 1,6 6370 0,7
3 114145,1 16,8 4101,7 49,8 1746,2 48,6 407013 45,0
4 123671,8 18,3 3776,8 45,9 1694 47,2 477390 52,8
5 129456,9 19,1 18,5 0,2 9,9 0,3 1842 0,2
6 129456,9 19,1 43,7 0,5 22,2 0,6 5400 0,6
Итого 677513,7 100,0 8232,8 100,0 3593,5 100,0 904350 100,0

Таблица 5. Группа №5

№ п/п Валовой региональный продукт, млн. руб. Уд. Вес, % Общая численность населения, тыс. чел Уд. Вес, % Численность занятого населения, тыс. чел Уд. Вес, % Стоимость основных фондов, млн. руб. Уд. Вес, %
1 356139 100,0 1401,9 100,0 792 100,0 641474 100,0
Итого 356139 100,0 1401,9 100,0 792 100,0 641474 100,0

В основном, все регионы находятся в 1-й группе, но наибольшее количество ВРП производится в регионах, относящихся ко 2-й группе. Тем не менее, Хантымансийский а.о., при стоимости 1/5 основных фондов и удельном весе численности населения 5,6%, произвел валового регионального продукта в размере 25,2% от выборки.

Сводные данные приведем в таблице 6.


Таблица 6. Сводная группировка

№ группы Валовой региональный продукт, млн. руб. Уд. Вес, % Общая численность населения, тыс. чел Уд. Вес, % Численность занятого населения, тыс. чел Уд. Вес, % Стоимость основных фондов, млн. руб. Уд. Вес, %
1 380992 26,9 15341,5 61,4 6160,4 58,4 1553901 50,1
2 677513,7 47,9 8232,8 33,0 3593,5 34,1 904350 29,2
3 - - - - - - - -
4 - - - - - - - -
5 356139 25,2 1401,9 5,6 792 7,5 641474 20,7
Итого 1414644,7 100,0 24976,2 100,0 10545,9 100,0 3099725 100,0

3.  Зависимость валового регионального продукта от стоимости основных фондов – прямо пропорциональна, от численности занятого населения – обратно пропорциональна и зависит от природных богатств региона.

4.  Полученная группировка нестандартна, так как отсутствуют 3,4 группы, но тем не менее, основное количество объектов исследования находится в 1-й группе, максимальные общие показатели находятся во 2-й группе, но при этом 5-я группа, несмотря на единственный объект, является лидером по всем показателям.


Задание №3

1. Определим нижнюю и верхнюю интервальные границы для каждой группы и составим рабочую таблицу, куда сведем первичный статистический материал:

Таблица 7. Рабочая таблица

№ группы

Валовой региональный продукт, млн.

руб.

Количество регионов, Fj

Середина интервала, млн

руб. Xj

Xj * Fj Накопленная частота f
1 2030,7–72852,4 23 37441,55 61155,65 23
2 72852,4–143674,1 6 108263,25 649579,5 29
3 143674,1–214495,8 - 179084,95 - 29
4 214495,8–285317,5 - 249906,65 - 29
5 285317,5–356139 1 320728,25 320728,25 30
Итого 30 1031463,4

Средняя арифметическая взвешенная:

Хср = 1031463,4 / 30 = 34382,1

Для определения показателей вариации вариационного ряда составим промежуточную таблицу на основе группировочной таблицы.

Таблица 8. Промежуточная таблица

Середина интервала по группам,

млн. руб.

Х

Количество регионов, F (X-Xcр) │X-Xcр│ F

(X-Xcр)2 F

37441,55 23 3059,45 70367,35 215285388,96
108263,25 6 73881,15 443286,9 32750545951,9
179084,95 - 144702,85 - -
249906,65 - 215524,55 - -
320728,25 1 286346,15 286346,15 81994117619,8
Итого 30 800000,4 114959948960,66

Размах вариации:

R =Xmax – Xmin=356139 – 2030,7 = 354108,3

Среднее линейное отклонение (взвешенное):

L =Σ (Х-Хср) F / n = 800000,4/30 = 266666,8 млн. руб.

Среднее квадратическое отклонение:

δ = √3831998298,68 = 61903,14

Дисперсия:

δ2 = 114959948960,66 / 30 = 3831998298,68

2. При построении гистограммы на оси абсцисс откладываются отрезки, соответствующие величине интервалов ряда. На отрезках строятся прямоугольники, площадь которых пропорциональна частотам интервала.

Вывод. По полученным графикам можно констатировать, что от группы к группе количество обследуемых объектов уменьшалось, при этом произошел разрыв между 2-й и 5-й группами, что подтверждается графиками гистограммы и полигона распределения. График куммуляты показывает, что от группы к группе нарастающим итогом происходило увеличение ВРП.

Средняя величина ВРП равна средней арифметической простой:

Хср = ∑Х / n = 1414644,7 / 30 = 47154,82

Коэффициент вариации V = 61903,14 / 34382,1 = 1,80

Модальным интервалом является интервал с наибольшей частотой. Моду в интервальном ряду находим по формуле

Мо = Хмо + I (Fmo – F-1) / ((Fmo – F-1) + (Fmo – F+1)), где

Хмо – начало модального интервала

Fmo – частота, соответствующая модальному интервалу

F-1 и F+1 – предмодальная и послемодальная частота

Мо = 2030,7 + 70821,7*(23–0) / ((23–0) +(23–6)) = 42753,18

Медианой называется вариант, который находится в середине вариационного ряда. В нашем случае это 15-й регион по порядку возрастания ВРП, т.е.

Ме=15462,2 млн. руб.

Квартили Q – значения признака в ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1, 25% единиц будут заключены межу Q1 и Q2, 25% – между Q2 и Q3, и остальные 25% превосходят Q3.

Q1= XQ1 + h ((n+1)/4 – S-1) / fQ1, где

XQ1 – нижняя граница интервала, в которой находится первая квартиль;

S-1 – сумма накопленных частот интервалов, предшествующих интервалу, в котором находится первая квартиль;

fQ1 – частота интервала, в котором находится первая квартиль

Q1 =2030,7+70821,7 * (31/4–0)/ 23 = 25894,5

Q2 = 2030,7+70821,7*(31/2–0)/23 = 49758,4

Q3 = 72852,4+70821,7*(31*0,75–23)/23=144443,9

4. Проверим гипотезу о законе распределения с помощью критерия согласия Пирсона χ2.

Рассчитаем теоретические частоты попадания количества регионов в соответствующие группы. Х1 и Х2 – соответственно нижние и верхние границы интервалов. Т1 и Т2 – нормированные отклонения для нижней и верхней границ интервала. F1 и F2 – значения интегральной функции Лапласа для Т1 и Т2 – определяем по таблицам Лапласа. Оценка попадания случайной величины Р определяется как разница F(T1) – F(T2). Теоретическая частота f' = Р х 30. Составим таблицу 9.

Таблица 9. Расчет теоретических частот

Границы интервала Фактич. частота f T1 = (Х1 – Хср) / σ T2 = (Х2 – Хср) / σ F(Т1) F (Т2) Р Теоретич. частота f'
-∞ – 2030,7 0 -∞ -0,729 -0,50 -0,2673 0,2327 7
-2030,7–72852,4 23 -0,729 0,415 -0,2673 0,1628 0,4301 13
72852,4–143674,1 6 0,415 1,559 0,1628 0,4406 0,2778 8
143674,1–214495,8 0 1,559 2,703 0,4406 0,4965 0,0559 2
214495,8–285317,5 0 2,703 3,847 0,4965 0,4999 0,0034 0
285317,5–356139 1 3,847 4,991 0,4999 0,5 0,0001 0
356139 – +∞ 0 4,991 +∞ 0,5 0,5 0 0
Итого 30 1,00 30

Проверка показывает, что расчеты сделаны правильно, так как равен итог фактических и теоретических частот.

Рассчитаем значение χ2 = ∑ (f – f')2 / f', произведя расчеты в таблице

Оставляем 2 группы, объединив 1,2 в 1-ю группу, 3–7 во 2-ю группу. Результаты заносим в таблицу 10.


Таблица 10. Расчет фактического значения по критерию Пирсона

Границы интервала f – f'

(f – f')2

(f – f')2 / f'

-∞ -72852,4 3 9 0,45
72852,4-+∞ -3 9 0,9
Итого 1,35

Табличное значение критерия Пирсона при числе степеней свободы 1 и вероятности 0,99 составляет 1,64. Расчетное значение χ2 меньше табличного, поэтому гипотеза о близости эмпирического распределения к нормальному не отвергается.


Задание №4

1. По таблице случайных чисел определим порядковые номера и вид выборки. В выборочную совокупность войдут регионы по двум последним цифрам из 30 первых чисел подряд. Получаем:

12; 20; 22; 20; 24; 12.

Объем выборки – 6 единиц.

Получаем случайную повторную выборку. Величина ВРП:

13043,6; 13043,6; 37501,6; 37501,6; 50914,3; 85889,1.

Составим таблицу 11.

Таблица 11. Выборочная совокупность случайных величин

Объем ВРП 13043,6 37501,6 50914,3 85889,1
Кол-во регионов 2 2 1 1

2. Средняя величина по выборочной совокупности

Хср = (13043,6х2+37501,6х2+50914,3+85889,1) / 6 = 39649,0

S2 =[(13043,6–39649) 2 х2 + (37501,6–39649) 2 х2 + (50914,3–39649)2 +(85889,1–39649)2] / 6 = 614995184

Среднее отклонение от средней в выборке S =√614995184 = ±24799,1

Средняя ошибка выборки σх = ±24799,1 / √6 = ±10126,2

Предельная ошибка выборки (с вероятностью 0,95 по таблице распределения Лапласа) ∆σх = 1,96 х 10126,2 = ±19847,4

Генеральная средняя находится в пределах:

39649–19847,4 = 19801,6

39649+19847,4 = 59496,4

Это соответствует расчетам средней арифметической простой 47154,82 и средней арифметической взвешенной 34382,1.


Задание №5

1. Примем стоимость ОПФ за факторный признак Х, Валовой региональный продукт ВРП за результативный Y.

Построим корреляционную таблицу 12

Таблица 12. Корреляционная таблица расчетов средней стоимости ОПФ и ВРП

№ группы Количество регионов Стоимость ОПФ всего Средняя Стоимость ОПФ ВРП всего Средний ВРП
1 23 1553901 67561 380992 16565
2 6 904350 150725 677513,7 112919
5 1 641474 641474 356139 356139
Итого 30 3099725 1414644,7

Увеличение средних значений результативного признака с увеличением значений факторного признака свидетельствует о возможном наличии прямой корреляционной связи.

Используя данные индивидуальных значений построим график «поля корреляции».

3. По сгруппированным данным построим уравнение регрессии

На поле корреляции появилась линия, которая по форме ближе всего к прямой. Поэтому предполагаем наличие прямолинейной связи, которая выражается уравнением Yср = а0 + а1 Х., где Х – стоимость ОПФ, Y – валовой региональный продукт. Используя метод наименьших квадратов, определим параметры уравнения, для этого решим систему нормальных уравнений

Рассчитаем значения и данные занесем в таблицу 13.


Таблица 13. Предварительный расчет

№ п/п Х Y

Х2

XY

y2

1 67561 16565 4564488721 1119147965 274399225
2 150725 112919 22718025625 17019716275 12750700561
3 641474 356139 411488892676 228453908886 126834987321
Итого 859760 485623 438771407022 246592773126 139860087107

n = 3 (количество групп)

Система уравнений примет вид

a0 n + a1 ∑X = ∑Y

a0 ∑X + a1 ∑X2 = ∑XY

или

3a0+ 859760a1 = 485623

859760a0+ 438771407022a1 = 246592773126

Разделим каждый член обоих уравнений на коэффициенты при a0

или

a0+ 286586,7a1 = 161874,3

a0+ 510341,7a1 = 286815,8

Определим a1 вычитанием уравнений из друг друга

-223755а1 = -124941,5

a1 =0,558385

a0 = 161874,3 -286586,7 х0,558385 = 1848,5

Y = 1848,5 + 0,558385 Х

Подставим в формулу средние фактические значения Х:

Y.1 = 1848,5 + 0,558385 х 67561 =39573,5

Y2 = 1848,5 + 0,558385х150725=86011,1

Y3 = 1848,5 + 0,558385х641474 = 360038,0

Нанесем полученные теоретические значения ВРП на график в п. 2

Между признаками прямая корреляционная взаимосвязь.

4.  Рассчитаем линейный коэффициент корреляции

r = (3х246592773126 – 859760 х 485623) / √ (3х438771407022–8597602) (3 х 139860087107 – 4856232) = (739778319378 – 417519230480) /

√ (1316314221066 – 739187257600) (419580261321 – 235829698129) = 0,9896

Критическое значение для первого уровня значимости при ά=0,05 равно 0,9969. Значит по критерию Фишера коэффициент корреляции не может считаться существенным.

5. Для малого объема выборочной совокупности используется тот факт, что.

tрасч = r√n-2 / √ (1-r2) = 0.9896 / √ (1–0.98962) = 6,880

В таблице значений ά – процентных пределов t ά,к в зависимости от к степеней свободы и заданного уровня значимости ά для распределения Стьюдента при уровне значимости 1 величина ά при t = 6,314 составляет 10%. Это значит, что с вероятностью 90% можно считать, что существует прямая зависимость между изучаемыми признаками.

6. С вероятностью не более 90% можно сказать, что между стоимостью ОПФ и валовым региональным продуктом существует прямая зависимость.


Задание №6

1. Результативный признак – объем валового регионального продукта (ВРП).

Факторные признаки:

– численность занятого населения;

– стоимость основных фондов (ОФ)

Важность факторов с экономической точки зрения и последовательность их включения в уравнение регрессии определим:

1) Стоимость основных фондов

2)  Численность занятого населения

2. Характер связей определим по коэффициентам Фехнера. Средняя по ОФ Х= 103324,2 млн. руб. Средняя по ВР Y = 47154,8 млн. руб.

Таблица 14. Зависимость ВРП от ОФ:

№ п/п

Ст-ть ОФ, млн. руб.

X

ВРП, млн. руб.,

Y

Зависимость отклонений индивидуальных значений признака от средней

Совпадение (а)

или несовпадение (b)

Для Х Для Y
1 2 3 4 5 6
1 1842 129456,9 - + B
2 3742 22160.9 - - A
3 5139 2030.7 - - A
4 5400 129456.9 - + B
5 5497 15462.2 - - A
6 6335 85889.1 - + B
7 6370 94893.9 - + B
8 14652 2616.3 - - A
9 15278 2568.1 - - A
10 17633 38994.1 - - A
11 18712 3212.1 - - A
12 20746 2443.5 - - A
13 21677 2127.1 - - A
14 32493 4317.5 - - A
15 43296 7572.3 - - A
16 47056 5110.2 - - A
17 48059 10529.8 - - A
Продолжение табл. 14
1 2 3 4 5 6
18 61889 14317.1 - - A
19 70373 14075.5 - - A
20 90800 20382.3 - - A
21 91700 18085 - - A
22 95617 10467.7 - `- A
23 113170 18372.1 + - B
24 134133 13043.6 + - B
25 180173 37501.6 + - B
26 201201 50914.3 + + A
27 220865 64688 + + A
28 407013 114145.1 + + A
29 477390 123671.8 + + A
30 641474 356139 + + A
Итого 3099725 1414644,7

В нашем случае коэффициент Фехнера не имеет практической ценности, т. к. совпадение в 23 случаях, несовпадение в 7 случаях,

Кф = (23–7) / (23+7) = 0,533

Рассчитаем зависимость ВРП от численности занятого населения.

Примем за Х численность занятого населения.

Средняя численность составляет X = 10545,9 / 30 = 351,53 тыс. чел.

Y= 47154,8


Таблица 15. Зависимость ВРП от средней численности занятого населения

№ п/п

Численность занятого населения, тыс. чел.,

Х

ВРП, млн. руб.,

Y

Зависимость отклонений индивидуальных значений признака от средней

Совпадение (а)

или несовпадение (b)

Для Х Для Y
1 9,9 14075.5 - - b
2 16,6 15462,2 - - a
3 21.4 50914.3 - + b
4 22.2 64688 - + b
5 26.3 18372.1 - + b
6 32.7 356139 - + b
7 58.7 13043.6 - - a
8 59.4 14317.1 - + b
9 62.5 114145.1 - + b
10 71.2 10467.7 - - a
11 84.3 2568.1 - - a
12 99.2 7572.3 - - a
13 117.4 94893.9 - - a
14 139.4 2616.3 - - a
15 156.8 5110.2 - - a
16 227.2 2127.1 - - a
17 241 10529.8 - - a
18 303.7 10529.8 - - a
19 333.4 3212.1 - - a
20 343.1 2568.1 - - a
21 395.5 18085 + - b
22 404.9 2443.5 + - b
23 471.7 18085 + - b
24 499.2 38994.1 + - b
25 610.4 20382.3 + + a
26 737.8 13043.6 + - b
27 767.8 5110.2 + - b
28 792 123671.8 + + a
29 1694 4317.5 + - b
30 1746.2 114145.1 + + a
Итого 1414644,7

Итог показывает, что совпадений 17, несовпадений – 13.

Кф = (17–13) / (17+13) = 0,133. Прямой зависимости между исследуемыми признаками не наблюдается.

356

*
300

250
200
150 *
*
100 * *
70 * *
60 *
50 *
40 *
30 *
20 * *
15 * * * * *
10
9
8 *
7 *
6
5 *
5 *
3 *
2 * **
1 *
5 15 30 45 60 80 100 130 150 200 250 300 350 400 450 500 550 600 640

График 5 Зависимость между ОФ и ВРП


Вывод. На графике видно, что наблюдается прямая корреляционная связь, при увеличении стоимости основных фондов, увеличивается валовой региональный продукт.

Построим график зависимости ВРП от средней численности занятого населения.

356 *
300
250
200
150
* *
100 * *
70
60 *
50 *
40 *
30
20 * *
15 * * *
* ** *
10 * * *
9
8
7 *
6
5 * *
5 *
3 * *
2 *
1 * * *
10 15 20 30 60 70 80 100 120 140 160 240 300 350 400 500 600 700 1700

График 6. Взаимосвязь ВРП от средней численности занятого населения


Вывод. По графику нельзя установить взаимосвязь между фактором и результативным признаком.

3. Линейный коэффициент корреляции взаимосвязи ВРП от ОФ r= 0,9896.

Взаимосвязь между численностью занятого населения и ВРП не наблюдается.


Задание №7

1. Выберем интервальный ряд из Статистического ежегодника «Россия в цифрах».

Таблица 16. Интервальный ряд динамики «Отправление грузов железнодорожным транспортом общего пользования за период 1990–2000 гг.»

Период 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
Отправлено грузов, млн. т 8,4 7,5 6,1 4,6 3,1 4,6 5,0 4,5 4,4 5,0 5,0

2.  Изобразим графически динамику ряда на графике 7.

3. 

8,5

8,0

7,5

7,0
6,5

Аналитич.

Выравнивание

6,0

5,5

Ср.скользящая
5,0

4,5

4,0
3,5

3,0

0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

График 7. Динамика ряда


4. Рассчитаем абсолютные и относительные показатели динамики.

Абсолютный прирост:

-  цепной           Δ yцi= yi yi-1                

yi, yi-1 – соответственно данный и предыдущий уровень ряда

п – количество уровней динамического ряда

-  базисный       Δ yбi = yi y1                  .

Абсолютные базисные и цепные приросты связаны между собой:

Коэффициент (темп) роста

Коэффициентом роста называется относительная величина, выраженная в долях единицы (Кi), та же самая величина, выраженная в процентах называется темпом роста (Тi).

-  цепной

-  базисный

Цепные и базисные коэффициенты роста связаны между собой:


 

Коэффициент (темп) прироста

-  цепной

-  базисный

Коэффициенты прироста и роста связаны между собой зависимостью:

4.  Данные занесем в таблицу


Таблица 17. Расчет абсолютных и относительных показателей динамики грузооборота

годы

Грузопо

ток, млн т

Абсолютное изменение, млн. т По сравнению с Коэффициенты роста по сравнению Темпы прироста (%) по сравнению

Абсолютное значение

1% прироста, тыс. т

Пункты роста,

%

уровнем 1990 г. предшеств. годом уровнем 1990 г. предшеств. годом уровнем 1990 г. предшеств. годом
1990 8,4 - - - - - - - -
1991 7,5 -0,9 -0,9 0,8929 0,8929 -10,71 -10,71 84,0 -10,71
1992 6,1 -2,3 -1,4 0,7262 0,8133 -27,38 -18,67 75,0 -16,67
1993 4,6 -3,8 -1,5 0,5476 0,7541 -45,24 -24,59 61,0 -17,86
1994 3,1 -5,3 -1,5 0,3690 0,6739 -63,10 -32,61 46,0 -17,86
1995 4,6 -3,8 +1,5 0,5476 1,4839 -45,24 +48,39 31,0 +17,86
1996 5,0 -3,4 +0,4 0,5952 1,0870 -40,48 +8,70 46,0 +4,76
1997 4,5 -3,9 -0,5 0,5357 0,9000 -46,43 -10,0 50,0 -5,95
1998 4,4 -4,0 -0,1 0,5238 0,9778 -47,62 -2,22 45,0 -1,19
1999 5,0 -3,4 +0,6 0,5952 1,1364 -40,48 +13,64 44,0 +7,14
2000 5,0 -3,4 - 0,5952 1,0 -40,48 - - -

За период 1990–2000 гг. произошло абсолютное уменьшение грузооборота на 3,4 млн. т, что составило уменьшение на 40,48%. Стабилизировалось положение после 1994 года, когда была достигнута минимальная точка ряда, прекратилось падение и наметился рост.

5.  Вычислим средние показатели динамики

Средний уровень ряда  определяется по формуле простой средней:

 = (8,4+7,5+6,1+4,6+3,1+4,6+5,0+4,5+4,4+5,0+5,0) / 11 = 58,2/11 = 5,29 млн. т


Средний абсолютный прирост  рассчитывается как средняя арифметическая из показателей скорости роста за отдельные промежутки времени:

 

= -3,4 / (11–1) = -0,34 млн. т

Средний коэффициент роста  вычисляется по формуле средней геометрической из показателей коэффициентов роста за отдельные периоды:

 = 10 √0,5952 = 0,9495

Средний коэффициент прироста

 = 0,9495–1 = -0,0505

6. Произведем сглаживание ряда с помощью скользящей средней с интервалом из трех уровней. Скользящая средняя при α=3 вычисляется по формуле:

Данные занесем в таблицу

Таблица 18. Расчет средней скользящей

Годы Грузооборот, млн. т Скользящие суммы, млн. т Скользящие средние, млн. т
1990 8,4
1991 7,5 22,0 7,3
1992 6,1 18,2 6,1
1993 4,6 13,8 4,6
1994 3,1 12,3 4,1
1995 4,6 12,7 4,2
1996 5,0 14,1 4,7
1997 4,5 13,9 4,6
1998 4,4 13,9 4,6
1999 5,0 14,4 4,8
2000 5,0

Расчетные данные укажем на графике 7.

Характер рассмотренного ряда динамики свидетельствует о понижательной тенденции.

При аналитическом выравнивании воспользуемся уравнением прямой у = b 0 + b 1 t

Где b0 = ∑у / n, b1 = ∑уt / ∑t2

Составим таблицу

Таблица 19. Аналитическое выравнивание ряда динамики

Годы

Грузооборот, млн. т

у

Усл. Обозначения периодов t Уt

t2

Выровненные уровни ряда
1990 8,4 -5 -42 25 6,67
1991 7,5 -4 -30 16 6,39
1992 6,1 -3 -18,3 9 6,12
1993 4,6 -2 -9,2 4 5,84
1994 3,1 -1 -3,1 1 5,58
1995 4,6 0 0 0 5,29
1996 5,0 1 5,0 1 5,0
1997 4,5 2 9,0 4 4,74
1998 4,4 3 13,2 9 4,46
1999 5,0 4 20,0 16 4,19
2000 5,0 5 25,0 25 3,91
Итого 58,2 -30,4 110 58,2

b0 = 58,2/11 = 5,29

b1 = -30,4/110 = -0,276

Формула аналитического выравнивания у = 5,29 – 0,276 t

Подставляя условные значения t, получим выровненные уровни ряда динамики, проставим их на графике 7.


Задание №8

Статистический сборник «Россия в цифрах»

Таблица 20. Оборот розничной торговли, объем платных и бытовых услуг населению в Тамбовской области в 1998–2000 гг., млн. руб.

Наименование 1998 1999 2000
Оборот розничной торговли 6243 10720 13795
Объем платных услуг 1365 1830 2615
Объем бытовых услуг 294 416 563

Решение

1.  Исчислим индивидуальные цепные индексы

Их получают сопоставлением текущих уровней с предшествующим.

Оборот розничной торговли:

Iорт1 = 10720/6243=1,717 или 171,7%

Iорт2 = 13795/10720 = 1,287 или 128,7%

Объем платных услуг:

Iопу1 = 1830/1365 = 1,341 или 134,1%

Iопу2 = 2615/1830 = 1,429 или 142,9%

Объем бытовых услуг:

Iобу1 = 416/294 = 1,415 или 141,5%

Iобу2 = 563/416 = 1,353 или 135,3%.

2.  Исчислим сводные индексы показателей.

Таблица 21. Расчет сводных индексов показателей

Наименование 1998 1999 2000 Всего
Оборот розничной торговли 6243 10720 13795 7902
Объем платных услуг 1365 1830 2615 12966
Объем бытовых услуг 294 416 563 16973

I1 = 12966 / 7902 = 1,64 или 164%

I2 = 16973 / 12966 = 1,31 или 131%

3.  Проверим правильность расчета сводных индексов, для этого рассчитаем удельные веса показателей в общем объеме.

1999 год (удельные веса 1998):

D орт 6243/7902 = 0,79

D опу 1365/7902 = 0,173

D обу 294/7902 = 0,037

Формула расчета:

I = ∑I I Di-1

I1 = 1,717 х 0,79 + 1,341 х 0,173 + 1,415 х 0,037 = 1,64 или 164%

2000 год (удельные веса 1999):

ОРТ 10720/12966 = 0,827

ОПУ 1830 / 12966 = 0,141

ОБУ 416 / 12966 = 0,032

I2 = 1,287 х 0,827 + 1,429 х 0,141 + 1,353 х 0,032 = 1,31 или 131%

В этом случае сводный индекс исчислен в средней арифметической форме.

4. Формула средней гармонической:

I =[∑ (d/i)] -1

1999 год (удельные веса 1999):

I 1 = (0,827/1,717+0,141/1,341 + 0,032/1,415) -1 = 0,61 -1 = 1,64 или 164%

2000 год (удельные веса 2000):

ОРТ 13795/16973 = 0,813

ОПУ 2615 / 16973 = 0,154

ОБУ 563 / 16973 = 0,033

I 2 = (0,813/1,287 + 0,154 / 1,429 + 0,033 / 1,353) -1 = 0,764 -1 = 1,31 или 131%.

Задание №1 Объект исследования: – 30 автономных образований России 1. Цель статистического наблюдения – собрать сведения о 30 автономных образований по валовому региональному продукту (ВРП), общей численности населения, численности заня

 

 

 

Внимание! Представленная Контрольная работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Контрольная работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Статистические показатели
Статистические показатели
Сущность и свойства валютной зоны
Сущность и типы контрактов
Статистические показатели коммерческой статистики
Статистические показатели развития туристской отрасли в экономике Великобритании и Беларуси
Статистические показатели экономического состояния предприятия
Структура и виды цен. Расчет основных экономических показателей
Структура цены. Акцизы, их сущность и порядок исчисления
Структуризация промышленности

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru