курсовые,контрольные,дипломы,рефераты
1. Анализ рядов распределения
Ряд распределения, графики в приложении.
Группы |
Частота f |
S |
До 10 |
4 |
4 |
10-20 |
28 |
32 |
20-30 |
45 |
77 |
30-40 |
39 |
116 |
40-50 |
28 |
144 |
50-60 |
15 |
159 |
60 и выше |
10 |
169 |
Итого |
169 |
Мода:
Медиана:
Нижний квартиль:
Верхний квартиль:
Средний уровень признака:
Группы |
Частота f |
x |
xf |
До 10 |
4 |
5 |
20 |
10-20 |
28 |
15 |
420 |
20-30 |
45 |
25 |
1125 |
30-40 |
39 |
35 |
1365 |
40-50 |
28 |
45 |
1260 |
50-60 |
15 |
55 |
825 |
60 и выше |
10 |
65 |
650 |
Итого |
169 |
- |
5665 |
Средняя величина может рассматриваться в совокупности с другими обобщающими характеристиками, в частности, совместно с модой и медианой. Их соотношение указывает на особенность ряда распределения. В данном случае средний уровень больше моды и медианы. Асимметрия положительная, правосторонняя.
Асимметрия распределения такова:
< < => 27,39 31,4 33,52
Показатели вариации:
1) Размах вариации R
2) Среднее линейное отклонение
(простая)
Группы |
f |
x |
xf |
S |
f |
(x-)2 |
f(x-)2 |
x2 |
x2f |
|
До 10 |
4 |
5 |
20 |
4 |
114,08 |
28,52 |
813,43 |
3253,72 |
25 |
100 |
10-20 |
28 |
15 |
420 |
32 |
518,58 |
18,52 |
343,02 |
9604,47 |
225 |
6300 |
20-30 |
45 |
25 |
1125 |
77 |
383,43 |
8,52 |
72,60 |
3267,11 |
625 |
28125 |
30-40 |
39 |
35 |
1365 |
116 |
57,69 |
1,48 |
2,19 |
85,34 |
1225 |
47775 |
40-50 |
28 |
45 |
1260 |
144 |
321,42 |
11,48 |
131,77 |
3689,67 |
2025 |
56700 |
50-60 |
15 |
55 |
825 |
159 |
322,19 |
21,48 |
461,36 |
6920,39 |
3025 |
45375 |
60 и в. |
10 |
65 |
650 |
169 |
314,79 |
31,48 |
990,95 |
9909,46 |
4225 |
42250 |
Итого |
169 |
- |
5665 |
- |
2032,18 |
121,48 |
- |
36730,18 |
226625 |
(взвешенная)
3) Дисперсия
Другие методы расчета дисперсии:
1. Первый метод
Группы |
f |
x |
||||
До 10 |
4 |
5 |
-3 |
9 |
-12 |
36 |
10-20 |
28 |
15 |
-2 |
4 |
-56 |
112 |
20-30 |
45 |
25 |
-1 |
1 |
-45 |
45 |
30-40 |
39 |
35 |
0 |
0 |
0 |
0 |
40-50 |
28 |
45 |
1 |
1 |
28 |
28 |
50-60 |
15 |
55 |
2 |
4 |
30 |
60 |
60 и выше |
10 |
65 |
3 |
9 |
30 |
90 |
Итого |
169 |
- |
- |
- |
-25 |
371 |
Условное начало С = 35
Величина интервала d = 10
Первый условный момент:
Средний уровень признака:
Второй условный момент:
Дисперсия признака:
2. Второй метод
Методика расчета дисперсии альтернативного признака:
Альтернативным называется признак, который принимает значение «да» или «нет». Этот признак выражает как количественный «да»-1, «нет»-0, это значение x , тогда для него надо определить среднюю и дисперсию.
Вывод формулы:
Признак х |
1 |
0 |
всего |
Частота f вероятность |
p |
g |
p + g = 1 |
xf |
1p |
0g |
p + 0 = p |
Средняя альтернативного признака равна доле единиц, которые этим признаком обладают.
- Дисперсия альтернативного признака. Она равна произведению доли единиц, обладающих признаком на ее дополнение до 1.
Дисперсия альтернативного признака используется при расчете ошибки для доли.
p |
g |
|
0,1 |
0,9 |
0,09 |
0,2 |
0,8 |
0,16 |
0,3 |
0,7 |
0,21 |
0,4 |
0,6 |
0,24 |
0,5 |
0,5 |
max 0,25 |
0,6 |
0,4 |
0,24 |
W – выборочная доля.
Виды дисперсии и правило их сложения:
Виды:
1. Межгрупповая дисперсия.
2. Общая дисперсия.
3. Средняя дисперсия.
4. Внутригрупповая дисперсия.
У всей совокупности может быть рассчитана общая средняя и общая дисперсия.
1. общая и
2. По каждой группе определяется своя средняя величина и своя дисперсия: a,a; i,i
3. Групповые средние i не одинаковые. Чем больше различия между группами, тем больше различаются групповые средние и отличаются от общей средней.
Это позволяет рассчитать дисперсию, которая показывает отклонение групповых средних от общей средней:
- межгрупповая дисперсия, где mi – численность единиц в каждой группе.
В каждой группе имеется своя колеблемость – внутригрупповая
Эти дисперсии находятся в определенном соотношении. Общая дисперсия равна сумме межгрупповой и средней из внутригрупповых дисперсий:
- правило сложения дисперсий.
Соотношения дисперсий используются для оценки тесноты связей между факторами влияния изучаемого фактора – это межгрупповая дисперсия. Все остальные факторы – остаточные факторы.
2. Ряды динамики
Ряд динамики, график ряда динамики в приложении.
Год |
Уровень |
1 |
40,6 |
2 |
41,5 |
3 |
49,5 |
4 |
43,6 |
5 |
39,2 |
6 |
40,7 |
7 |
38,2 |
8 |
36,5 |
9 |
38,0 |
10 |
38,7 |
11 |
39,4 |
Средняя хронологическая:
Производные показатели ряда динамики:
- коэффициент роста, базисный
- коэффициент роста, цепной
- коэффициент прироста
- абсолютное значение одного процента прироста
Год |
Уровень |
Темпы роста % |
Темпы прироста % |
А1% |
|||
Базисные |
Цепные |
Базисные |
Цепные |
||||
1 |
40,6 |
- |
100 |
- |
- |
- |
- |
2 |
41,5 |
0,9 |
102,2167 |
102,2167 |
2,216749 |
2,216749 |
0,406 |
3 |
49,5 |
8 |
121,9212 |
119,2771 |
21,92118 |
19,27711 |
0,415 |
4 |
43,6 |
-5,9 |
107,3892 |
88,08081 |
7,389163 |
-11,9192 |
0,495 |
5 |
39,2 |
-4,4 |
96,55172 |
89,90826 |
-3,44828 |
-10,0917 |
0,436 |
6 |
40,7 |
1,5 |
100,2463 |
103,8265 |
0,246305 |
3,826531 |
0,392 |
7 |
38,2 |
-2,5 |
94,08867 |
93,85749 |
-5,91133 |
-6,14251 |
0,407 |
8 |
36,5 |
-1,7 |
89,90148 |
95,54974 |
-10,0985 |
-4,45026 |
0,382 |
9 |
38 |
1,5 |
93,59606 |
104,1096 |
-6,40394 |
4,109589 |
0,365 |
10 |
38,7 |
0,7 |
95,3202 |
101,8421 |
-4,6798 |
1,842105 |
0,38 |
11 |
39,4 |
0,7 |
97,04433 |
101,8088 |
-2,95567 |
1,808786 |
0,387 |
Взаимосвязь цепных и базисных коэффициентов роста:
1. Произведение последовательных цепных коэффициентов равно базисному:
и т. д.
2. Частное от деления одного базисного равно цепному коэффициенту:
и т. д.
Средний абсолютный прирост:
Средний годовой коэффициент роста:
1)
2)
3)
Анализ тенденции изменений условий ряда:
Анализ состоит в том, чтобы выявить закономерность.
Метод – укрупнение интервалов и расчет среднего уровня
Год |
Уровень |
Новые периоды |
Новые уровни |
1 |
40,6 |
1 |
43,9 |
2 |
41,5 |
||
3 |
49,5 |
||
4 |
43,6 |
2 |
41,2 |
5 |
39,2 |
||
6 |
40,7 |
||
7 |
38,2 |
3 |
37,6 |
8 |
36,5 |
||
9 |
38,0 |
||
10 |
38,7 |
4 |
39,1 |
11 |
39,4 |
Тенденция изображена в виде ступенчатого графика (в приложении).
Сезонные колебания:
Месяц |
Годы |
Ср. уровень за каждый месяц |
Индекс сезонности |
||
1998 |
1999 |
2000 |
|||
1 |
242 |
254 |
249 |
248,3333 |
81,24318 |
2 |
236 |
244 |
240 |
240 |
78,5169 |
3 |
284 |
272 |
277 |
277,6667 |
90,83969 |
4 |
295 |
291 |
293 |
293 |
95,85605 |
5 |
314 |
323 |
331 |
322,6667 |
105,5616 |
6 |
328 |
339 |
344 |
337 |
110,2508 |
7 |
345 |
340 |
353 |
346 |
113,1952 |
8 |
362 |
365 |
364 |
363,6667 |
118,9749 |
9 |
371 |
373 |
369 |
371 |
121,374 |
10 |
325 |
319 |
314 |
319,3333 |
104,4711 |
11 |
291 |
297 |
290 |
292,6667 |
95,747 |
12 |
260 |
252 |
258 |
256,6667 |
83,96947 |
Индекс сезонности:
График «Сезонная волна» в приложении.
3. Индексы
Товар –представитель |
базисный год 1999 |
текущий год 2000 |
стоимость pq |
p0q1 |
p1q0 |
|||
цена |
объем |
цена |
объем |
базис.год |
текущ.год |
|||
А |
12,5 |
420 |
10,7 |
462 |
5250 |
4943,4 |
5775 |
4494 |
Б |
3,2 |
2540 |
4,5 |
2405 |
8128 |
10822,5 |
7696 |
11430 |
В |
45,7 |
84 |
55,3 |
97 |
3838,8 |
5364,1 |
4432,9 |
4645,2 |
Г |
83,5 |
156 |
82,5 |
162 |
13026 |
13365 |
13527 |
12870 |
p0 |
q0 |
P1 |
q1 |
p0q0 |
p1q1 |
p0q1 |
p1q0 |
|
Итого |
|
|
|
|
30242,8 |
34495 |
31430,9 |
33439,2 |
Индивидуальные индексы:
Товар |
ip |
iq |
А |
85,6 |
110 |
Б |
140,625 |
94,68504 |
В |
121,0065646 |
115,4762 |
Г |
98,80239521 |
103,8462 |
Расчет индивидуальных индексов ведется по формулам:
ip = ; iq =
Общий индекс физического объема:
Iq =
Общий индекс цен:
1) Ip =
2) Ip =
3) Ip(фишер) =
Общий индекс стоимости:
Ipq =
Взаимосвязь индексов Ip , Iq , Ipq :
Ip x Iq = Ipq
(1,0975 x 1,0393) x 100 = 114,06
Влияние факторов на изменение стоимости:
Общее изменение стоимости составило:
pq =
в том числе :
- за счет роста цен на 9,75% дополнительно получено доходов:
p =
- за счет роста физического объема продаж на 3,93% дополнительные доходы получены в размере:
q =
Взаимосвязь p, q, pq :
pq = p + q
4252,2 = 3064,1 + 1188,1
Методика преобразования общих индексов в среднюю из индивидуальных:
Общие индексы – это относительные величины, в то же время, общие индексы являются средними из индивидуальных индексов, т.е. индивидуальный индекс i x, а Y
Алгоритм :
1. Индекс физического объема
а) индивидуальный индекс физического объема:
iq =
Товар iq А110 Б 94,68504 В 115,4762 Г 103,8462 |
б) Общий индекс физического объема:
Iq =
в)
г) Iq =
iq x (q0p0) f
Таким образом, индекс физического объема представляет собой среднюю арифметическую из индивидуальных индексов, взвешенных по стоимости продукции базового периода.
2. Индекс цен Ласпейреса Ip = ip =
Товар |
ip |
А |
85,6 |
Б |
140,625 |
В |
121,007 |
Г |
98,802 |
Индекс цен Ласпейреса – это средняя арифметическая из индивидуальных индексов, взвешанных по стоимости базового периода или удельному весу.
3. Индекс цен Пааше
а) Индивидуальный индекс цены
ip = б) Ip = в) p0 = p = Индекс цен Пааше является средней гармонической величиной из индивидуальных индексов, взвешенных по стоимости текущего периода.
1. Анализ рядов распределения Ряд распределения, графики в приложении. Группы Частота f S До 10 4 4 10-20 28 32 20-30 45 77 30-
Комплексные числа и действия с ними
Треугольник РЕЛО (Трикутник Рьоло)
Задача коммивояжера
Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета
Теорема Безу
Дискретная математика (Конспекты 15 лекций)
Разбиения выпуклого многоугольника
Построение решения задачи Гурса для телеграфного уравнения методом Римана
Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения
Краткая методичка по логике
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.