База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Статистика (шпаргалка 2002г.) — Математика

1. Анализ рядов распределения

Ряд распределения, графики в приложении.

Группы

Частота f

S

До 10

4

4

10-20

28

32

20-30

45

77

30-40

39

116

40-50

28

144

50-60

15

159

60 и выше

10

169

Итого

169

Мода:

Медиана:

Нижний квартиль:

Верхний квартиль:

Средний уровень признака:

Группы

Частота f

x

xf

До 10

4

5

20

10-20

28

15

420

20-30

45

25

1125

30-40

39

35

1365

40-50

28

45

1260

50-60

15

55

825

60 и выше

10

65

650

Итого

169

-

5665

Средняя величина может рассматриваться в совокупности с другими обобщающими характеристиками, в частности, совместно с модой и медианой. Их соотношение указывает на особенность ряда распределения. В данном случае средний уровень больше моды и медианы. Асимметрия положительная, правосторонняя. 

Асимметрия распределения такова:

    <                           <        =>    27,39   31,4   33,52

Показатели вариации:

1) Размах вариации R

2) Среднее линейное отклонение

 (простая)

Группы

f

x

xf

S

f

(x-)2

f(x-)2

x2

x2f

До 10

4

5

20

4

114,08

28,52

813,43

3253,72

25

100

10-20

28

15

420

32

518,58

18,52

343,02

9604,47

225

6300

20-30

45

25

1125

77

383,43

8,52

72,60

3267,11

625

28125

30-40

39

35

1365

116

57,69

1,48

2,19

85,34

1225

47775

40-50

28

45

1260

144

321,42

11,48

131,77

3689,67

2025

56700

50-60

15

55

825

159

322,19

21,48

461,36

6920,39

3025

45375

60 и в.

10

65

650

169

314,79

31,48

990,95

9909,46

4225

42250

Итого

169

-

5665

-

2032,18

121,48

-

36730,18

226625

   (взвешенная)

3) Дисперсия

Другие методы расчета дисперсии:

1. Первый метод

Группы

f

x

До 10

4

5

-3

9

-12

36

10-20

28

15

-2

4

-56

112

20-30

45

25

-1

1

-45

45

30-40

39

35

0

0

0

0

40-50

28

45

1

1

28

28

50-60

15

55

2

4

30

60

60 и выше

10

65

3

9

30

90

Итого

169

-

-

-

-25

371

Условное начало С = 35

Величина интервала d = 10

Первый условный момент:

Средний уровень признака:

Второй условный момент:

Дисперсия признака:

2. Второй метод

Методика расчета дисперсии альтернативного признака:

   Альтернативным называется признак, который принимает значение «да» или «нет». Этот признак выражает как количественный «да»-1, «нет»-0, это значение x , тогда для него надо определить среднюю и дисперсию.

Вывод формулы:

Признак  х

1

0

всего

Частота f                      вероятность

p

g

p + g = 1

xf

1p

0g

p + 0 = p

Средняя альтернативного признака равна доле единиц, которые этим признаком обладают.

            - Дисперсия альтернативного признака. Она равна произведению доли единиц, обладающих признаком на ее дополнение до 1.

   Дисперсия альтернативного признака используется при расчете ошибки для доли.

p

g

0,1

0,9

0,09

0,2

0,8

0,16

0,3

0,7

0,21

0,4

0,6

0,24

0,5

0,5

max       0,25

0,6

0,4

0,24

 

W – выборочная доля.

Виды дисперсии и правило их сложения:

Виды:

1. Межгрупповая дисперсия.

2. Общая дисперсия.

3. Средняя дисперсия.

4. Внутригрупповая дисперсия.

У всей совокупности может быть рассчитана общая средняя и общая дисперсия.

1.  общая и

2. По каждой группе определяется своя средняя величина и своя дисперсия: a,a; i,i

3. Групповые средние i  не одинаковые.  Чем больше различия между группами, тем больше различаются групповые средние и отличаются от общей средней.

Это позволяет рассчитать дисперсию, которая показывает отклонение групповых средних от общей средней:

   - межгрупповая дисперсия, где mi – численность единиц в каждой группе.

В каждой группе имеется своя колеблемость – внутригрупповая

Эти дисперсии находятся в определенном соотношении. Общая дисперсия равна сумме межгрупповой и средней из внутригрупповых дисперсий:

                  -  правило сложения дисперсий.

Соотношения дисперсий используются для оценки тесноты связей между факторами влияния изучаемого фактора – это межгрупповая дисперсия. Все остальные факторы – остаточные факторы.

2. Ряды динамики

Ряд динамики, график ряда динамики в приложении.

Год

Уровень

1

40,6

 2

41,5

3

49,5

4

43,6

5

39,2

6

40,7

7

38,2

8

36,5

9

38,0

10

38,7

11

39,4

Средняя хронологическая:

Производные показатели ряда динамики:

 - коэффициент роста, базисный

 - коэффициент роста, цепной

 - коэффициент прироста

 - абсолютное значение одного процента прироста

Год

Уровень

Темпы роста %

Темпы прироста %

А1%

Базисные

Цепные

Базисные

Цепные

1

40,6

-

100

-

-

-

-

2

41,5

0,9

102,2167

102,2167

2,216749

2,216749

0,406

3

49,5

8

121,9212

119,2771

21,92118

19,27711

0,415

4

43,6

-5,9

107,3892

88,08081

7,389163

-11,9192

0,495

5

39,2

-4,4

96,55172

89,90826

-3,44828

-10,0917

0,436

6

40,7

1,5

100,2463

103,8265

0,246305

3,826531

0,392

7

38,2

-2,5

94,08867

93,85749

-5,91133

-6,14251

0,407

8

36,5

-1,7

89,90148

95,54974

-10,0985

-4,45026

0,382

9

38

1,5

93,59606

104,1096

-6,40394

4,109589

0,365

10

38,7

0,7

95,3202

101,8421

-4,6798

1,842105

0,38

11

39,4

0,7

97,04433

101,8088

-2,95567

1,808786

0,387

Взаимосвязь цепных и базисных коэффициентов роста:

1.          Произведение последовательных цепных коэффициентов равно базисному:

 и т. д.

2.          Частное от деления одного базисного равно цепному коэффициенту:

 и т. д.

Средний абсолютный прирост:

Средний годовой коэффициент роста:

1)

2)

3)

Анализ тенденции изменений условий ряда:

Анализ состоит в том, чтобы выявить закономерность.

Метод – укрупнение интервалов и расчет среднего уровня

Год

Уровень

Новые периоды

Новые уровни

1

40,6

1

43,9

 2

41,5

3

49,5

4

43,6

2

41,2

5

39,2

6

40,7

7

38,2

3

37,6

8

36,5

9

38,0

10

38,7

4

39,1

11

39,4

Тенденция изображена в виде ступенчатого графика (в приложении).

Сезонные колебания:

Месяц

Годы

Ср. уровень за каждый месяц

Индекс сезонности

1998

1999

2000

1

242

254

249

248,3333

81,24318

2

236

244

240

240

78,5169

3

284

272

277

277,6667

90,83969

4

295

291

293

293

95,85605

5

314

323

331

322,6667

105,5616

6

328

339

344

337

110,2508

7

345

340

353

346

113,1952

8

362

365

364

363,6667

118,9749

9

371

373

369

371

121,374

10

325

319

314

319,3333

104,4711

11

291

297

290

292,6667

95,747

12

260

252

258

256,6667

83,96947

Индекс сезонности:

 График «Сезонная волна» в приложении.

3. Индексы

Товар –представитель

базисный год

1999

текущий год

2000

стоимость

pq

p0q1

p1q0

цена

объем

цена

объем

базис.год

текущ.год

А

12,5

420

10,7

462

5250

4943,4

5775

4494

Б

3,2

2540

4,5

2405

8128

10822,5

7696

11430

В

45,7

84

55,3

97

3838,8

5364,1

4432,9

4645,2

Г

83,5

156

82,5

162

13026

13365

13527

12870

p0

q0

P1

q1

p0q0

p1q1

p0q1

p1q0

Итого

 

 

 

 

30242,8

34495

31430,9

33439,2

Индивидуальные индексы:

Товар

ip

iq

А

85,6

110

Б

140,625

94,68504

В

121,0065646

115,4762

Г

98,80239521

103,8462

Расчет индивидуальных индексов ведется по формулам:

ip  =  ; iq  =

Общий индекс физического объема:

Iq =  

Общий индекс цен:

1) Ip =

2) Ip =

3) Ip(фишер) =

Общий индекс стоимости:

Ipq =

Взаимосвязь индексов Ip , Iq , Ipq :

Ip x  Iq  =  Ipq

(1,0975 x 1,0393) x 100 = 114,06

Влияние факторов на изменение стоимости:

Общее изменение стоимости составило:

 pq =

в том числе :

-  за счет роста цен на 9,75% дополнительно получено доходов:

p =

 - за счет роста физического объема продаж на 3,93% дополнительные доходы получены в размере:

q =

Взаимосвязь p, q, pq :

pq = p + q

4252,2 = 3064,1 + 1188,1

Методика преобразования общих индексов в среднюю из индивидуальных:

Общие индексы – это относительные величины, в то же время, общие индексы являются средними из индивидуальных индексов, т.е. индивидуальный индекс i     x, а Y    

Алгоритм :

1. Индекс физического объема

а) индивидуальный индекс физического объема:

iq  =

Товар

iq

А

110

Б

94,68504

В

115,4762

Г

103,8462

б) Общий индекс физического объема:

Iq =

в)

г) Iq =

iq           x      (q0p0)        f

Таким образом, индекс физического объема представляет собой среднюю арифметическую из индивидуальных индексов, взвешенных по стоимости продукции базового периода.

2. Индекс цен Ласпейреса Ip =   ip  =

Товар

ip

А

85,6

Б

140,625

В

121,007

Г

98,802

Индекс цен Ласпейреса – это средняя арифметическая из индивидуальных индексов, взвешанных по стоимости базового периода или удельному весу.

3. Индекс цен Пааше

а) Индивидуальный индекс цены

ip  = б) Ip =  в) p0  = p = Индекс цен Пааше является средней гармонической величиной из индивидуальных индексов, взвешенных по стоимости текущего периода.

1. Анализ рядов распределения Ряд распределения, графики в приложении. Группы Частота f S До 10 4 4 10-20 28 32 20-30 45 77 30-

 

 

 

Внимание! Представленная Работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Комплексные числа и действия с ними
Треугольник РЕЛО (Трикутник Рьоло)
Задача коммивояжера
Программа государственного экзамена по математике для студентов математического факультета Московского городского педагогического университета
Теорема Безу
Дискретная математика (Конспекты 15 лекций)
Разбиения выпуклого многоугольника
Построение решения задачи Гурса для телеграфного уравнения методом Римана
Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения
Краткая методичка по логике

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru