База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Таблица производных. Дифференцирование сложных функций — Математика


Контрольная работа

Дисциплина: Высшая математика

Тема: Таблица производных. Дифференцирование сложных функций


1. Таблица производных

Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.

1. .

Найдем производную, когда .

Зададим приращение аргументу , что даст . Так как

, а , то

Отсюда  и ,

то есть . Если , результат тот же.

2. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и , то есть .

3. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и , то есть .

4. .

По определению . Будем дифференцировать  как частное:

, то есть .

5. .

По определению . Будем дифференцировать  как частное:

, то есть .

6. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда  и

,

то есть . Здесь была использована формула для второго замечательного предела.

7. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

8. .

Зададим приращение аргументу , что даст . Так как , а , то . Отсюда

 и , то есть .

Здесь была использована формула для одного из следствий из второго замечательного предела.

9. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

Прежде чем перейти к вычислению производных от обратных тригонометрических функций, рассмотрим вопрос о дифференцировании обратных функций вообще. Как было сказано в п. 8.2, для каждого взаимно однозначного отображения существует обратное отображение, то есть если , то .

Теорема. Если для некоторой функции  существует обратная ей , которая в точке  имеет производную не равную нулю, то в точке  функция  имеет производную  равную , то есть .

Доказательство. Рассмотрим отношение приращения функции к приращению аргумента: . Так как функция  имеет производную, то согласно теореме 11.2.2 она непрерывна, то есть , откуда . Значит, .

Воспользуемся данной теоремой для вычисления производных обратных тригонометрических функций.

10. .

В данном случае обратной функцией будет . Для нее . Отсюда

,

то есть .

11. .

Так как

, то . .

В данном случае обратной функцией будет . Для нее

.

Отсюда , то есть .

13. .

Так как

, то .


2. Производная сложной функции

Пусть дана функция  и при этом . Тогда исходную функцию можно представить в виде . Функции такого типа называются сложными. Например, .

В выражении  аргумент  называется промежуточным аргументом. Установим правило дифференцирования сложных функций, так как они охватывают практически все виды существующих функций.

Теорема. Пусть функция  имеет производную в точке , а функция  имеет производную в соответствующей точке . Тогда сложная функция  в точке  также будет иметь производную равную производной функции  по промежуточному аргументу умноженной на производную промежуточного аргумента по , то есть .

Для доказательства дадим приращение аргументу , то есть от  перейдем к . Это вызовет приращение промежуточного аргумента , который от  перейдет к . Но это, в свою очередь, приведет к изменению , который от  перейдет к . Так как согласно условию теоремы функции  и  имеют производные, то в соответствии с теоремой о связи дифференцируемости и непрерывности функции (теорема 11.2.2) они непрерывны. Значит, если , то и , что, в свою очередь, вызовет стремление  к нулю.

Составим . Отсюда,

и, следовательно, .

Если функция  имеет не один, а два промежуточных аргумента, то есть ее можно представить в виде , где , а , или , то, соответственно,  и так далее.

3. Дифференцирование параметрически заданной функции

Выше были рассмотрены производные элементарных функций и указано правило дифференцирования сложных функций, составленных из элементарных. Но существуют и другие способы задания функций, которые также необходимо дифференцировать. Одним из таких способов является параметрическое задание функции, с которым мы уже сталкивались при изучении уравнения прямой линии.

При обычном задании функции уравнение связывало между собой две переменных: аргумент и функцию. Задавая , получаем значение , то есть пару чисел, являющихся координатами точки . При изменении  меняется , точка начинает перемещаться и описывать некоторую линию. Однако при задании линии часто бывает удобно переменные  и  связывать не между собой, а выражать их через третью переменную величину.

Пусть даны две функции:  где . Для каждого значения  из данного промежутка будет своя пара чисел  и , которой будет соответствовать точка . Пробегая все значения,  заставляет меняться  и , то есть точка  движется и описывает некоторую кривую. Указанные уравнения называются параметрическим заданием функции, а переменная  – параметром.

Если функция  взаимно однозначная и имеет обратную себе, то можно найти . Подставляя  в , получим , то есть обычную функцию. Указанная операция называется исключением параметра. Однако при параметрическом задании функции эту операцию не всегда делать удобно, а иногда и просто невозможно.

Так, в механике принят способ изображения траектории точки в виде изменения ее проекций по осям  и  в зависимости от времени , то есть в виде параметрически заданной функции  Такой способ значительно удобнее при решении целого ряда задач. В трехмерном случае сюда добавляется еще и уравнение .

В качестве примера рассмотрим несколько параметрически заданных кривых.

1. Окружность.

Возьмем точку  на окружности с радиусом . Выражая  и  через гипотенузу прямоугольного треугольника, получаем:

Это и есть уравнение окружности в параметрической форме (рис. 3.1). Возводя каждое уравнение в квадрат, отсюда легко получить обычное уравнение окружности .


Рис. 3.1

2. Эллипс.

Известно, что уравнение эллипса – . Отсюда . Возьмем две точки  и  на окружности и эллипсе, имеющие одинаковую абсциссу  (рис. 3.2). Тогда из уравнения окружности следует, что . Подставим это выражение в : . Значит, уравнение эллипса в параметрической форме имеет вид

Рис. 3.2


3. Циклоида.

Пусть по ровной горизонтальной поверхности катится без скольжения окружность с радиусом . Зафиксируем точку O ее соприкосновения с поверхностью в начальный момент. Когда окружность повернется на угол t, точка O перейдет в точку C (рис. 3.3). Найдем ее координаты:

Значит, параметрическое уравнение циклоиды имеет вид:

Рис. 3.3

4. Астроида.

Пусть внутри окружности радиуса  без скольжения катится другая окружность радиуса . Тогда точка меньшей окружности, которая в начальный момент времени была точкой соприкосновения с большей, в процессе движения опишет астроиду (рис. 3.4), параметрическое уравнение которой имеет вид:

Рис. 3.4

Рассмотрев ряд примеров, перейдем теперь к вопросу о дифференцировании параметрически заданных функций.

Пусть функция  от  задана параметрически:  где . Пусть на этом отрезке обе функции имеют производные и при этом . Найдем .

Составим отношение . Тогда

.

Следовательно, . Это и есть правило дифференцирования параметрически заданных функций.


Литература

 

1.  Бугров Я.С., Никольский С.М. ВЫСШАЯ МАТЕМАТИКА В 3-х томах Т. 1 Элементы линейной алгебры и аналитической геометрии 8-е изд. Изд-во: ДРОФА, 2006. – 284с.

2.  Мироненко Е.С. Высшая математика. М: Высшая школа, 2002. – 109с.

3.  Никольский С.М., Бугров Я.С. ВЫСШАЯ МАТЕМАТИКА В 3-Х ТОМАХ Т. 2 Дифференциальное и интегральное исчисление 8-е изд. Изд-во: ДРОФА, 2007. – 509с.

4.  Черненко В.Д. Высшая математика в примерах и задачах. В трех томах. ПОЛИТЕХНИКА, 2003.

Контрольная работа Дисциплина: Высшая математика Тема: Таблица производных. Дифференцирование сложных функций 1. Таблица производных Как известно, большинство функций можно представить в виде какой-то комбинации элементарны

 

 

 

Внимание! Представленная Контрольная работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Контрольная работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Проверка гипотезы о законе распределения случайной величины по критерию Пирсона
Определение вероятности
Определение вероятности событий
Фундаментальная группа. Конечные поля
Теория вероятности и математическая статистика
Построение порождающего полинома циклического кода по его корням (степеням корней)
Основы логических суждений
Вычисление случайных величин
Дискретная теория поля
Математический расчет объема выпуска продукции

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru