курсовые,контрольные,дипломы,рефераты
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ОБЩИЕ СВЕДЕНИЯ О ВИСМУТЕ
1.1 Происхождение висмута
1.2 Физические свойства
1.3 Химические свойства
1.4 Получение висмута
2. НАХОЖДЕНИЕ В ПРИРОДЕ
2.1 Содержание в земной коре
2.1.1 Висмутин
2.1.2 Прочие руды, содержащие висмут
2.1.3 Добыча и производство
2.2 Содержание в воде
3. ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ВИСМУТА
4. ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ
4.1 Применение в металлургической промышленности и машиностроении
4.2 Применение в медицине
4.3 Другие способы применения
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Среди элементов периодической системы висмут – последний практически не радиоактивный элемент, И он же открывает шеренгу тяжелых элементов – естественных альфа-излучателей. Действительно, тот висмут, который мы знаем по химическим соединениям, минералам и сплавам, принято (и не без оснований) считать стабильным, а между тем, тонкими экспериментами установлено, что стабильность висмута –кажущаяся. В действительности же ядра его атомов иногда «гибнут», правда, очень нечасто: период полураспада основного природного изотопа висмута – более лет. Это примерно в полмиллиарда раз больше возраста нашей планеты...
Кроме висмута-209, известны еще 26 изотопов элемента № 83. Все они радиоактивны и короткоживущие: периоды полураспада не превышают нескольких суток.
Двадцать изотопов висмута с массовыми числами от 189 до 208 и самый тяжелый подучены искусственным путем, остальные - 210Bi, 211Bi, 212Bi, 213Bi и 214Bi – образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.
Таким образом, несмотря на то что на практике мы встречаем лишь практически стабильный висмут-209, не следует забывать о важной роли элемента № 83 во всех областях знания, так или иначе связанных с радиоактивностью. Не будем, однако, впадать в другую крайность. Практическую важность приобрел прежде всего стабильный (или правильнее – псевдостабильный) висмут. Поэтому именно ему быть главным «героем» дальнейшего повествования.
Висмут (лат. Bismuthum) – химический элемент V группы периодической системы Д.И. Менделеева. Среди нерадиоактивных элементов висмут имеет самый большой атомный номер – 83 и атомную массу – 208,9804.
Происхождение названия этого элемента трактуют по-разному. Одни исследователи склонны считать его производным от древнегерманского слова «Wismuth» (белый металл), другие – от немецких слов «Wiese» (луг) и «muten» (разрабатывать рудник), поскольку в Саксонии, висмут издревле добывали на лугах округа Шнееберг. Есть еще одна версия, согласно которой название элемента произошло от арабского «би исмид», что означает «обладатель свойств сурьмы». Висмут действительно на нее очень похож. Какая из этих точек зрения наиболее близка к истине, сказать трудно. Нынешний символ элемента №83, Bi, впервые введен в химическую номенклатуру в 1819 г. шведским химиком Берцелиусом.
Висмут известен со средневековья (впервые упомянут в письменных источниках в 1450 году как Wismutton или Bisemutum). Первые сведения о висмуте появились в начале XVI в. в трудах минералога и металлурга Георга Бауэра (Агриколы). Однако до XVIII века его считали разновидностью свинца, олова или сурьмы. Лишь в 1753 француз Клод Жофруа (Claude J. Geoffroy) высказал мнение, что это отдельный элемент. Эту точку зрения подтвердил в 1793 г. Потт (J. H. Pott), описавший свойства висмута. В 1739 г. немецкий химик Потт установил самостоятельность элемента висмута. Окончательно как элемент он был открыт в 1799 г. шведским химиком Т. Бергманом.
Известный металлург и минералог средневековья Георг Агрикола в своей книге "О месторождениях и рудниках в старое и новое время", написанной в 1546 году, возвел висмут в ранг одного из основных металлов, присовокупив его к известной с древности "великолепной семерке" - золоту, серебру, меди, железу, свинцу, олову и ртути. Однако окончательно "права гражданства" висмут обрел лишь в XVIII веке. Этому металлу, пожалуй, как ни одному другому химическому элементу, повезло с названиями: по подсчетам некоторых ученых, в литературе XV-XVIII веков можно встретить более 20 "псевдонимов" висмута и среди них такие выразительные, как демогоргон, глаура, нимфа.
Висмут является последним членом подгруппы мышьяка. Относится к халькофильным элементам. Ближайшие аналоги висмута — сурьма и свинец. Кларк его по А. П. Виноградову составляет 9–10%. Содержание висмута повышается от ультраосновных магматических пород (1–10%) к кислым (1– 10%). Он представлен одним изотопом с массовым числом 209. Характеризуется переменной валентностью, в природных условиях преобладает Bi3+. Высокое сродство к сере, способность существовать в свободном состоянии и склонность к образованию основных солей определяют важнейшие формы нахождения висмута в природе. На магматическом этапе висмут не концентрируется. Его накопление связано с постмагматическими процессами гранитоидных магм. Из магматических очагов он выносится в хлоркомплексах (BiCl2+, BiCl0) и гидрооксокомплек-сах (Bi(OH)3, Bi(OH)2J). При экзогенных процессах первичные сульфидные соединения висмута окисляются (образуются оксидные и карбонатные соединения). При слабом проявлении процессов окисления висмутин и самородный висмут могут образовать россыпи.
Висмут – это серебристо-серый металл с розоватым оттенком, хрупкий, легкоплавкий, плотность при 20 оС – 9,80 г/см3. Висмут — белый металл с розоватым оттенком. При комнатной температуре Висмут легко раскалывается по плоскостям спайности, в фарфоровой ступке растирается в порошок.Он обладает диамагнитностью, плохой теплопроводностью, низкой температурой плавления (271,4 оС), высокой температурой кипения (1560 °С) и способностью расширяться в объеме при затвердевании. Удельная магнитная восприимчивость равна -1,35·10-6. Висмут – самый диамагнитный металл: если его поместить между полюсами обычного магнита, то он, стремясь с одинаковой силой оттолкнуться от обоих полюсов, займет положение на равном от них расстоянии. Под влиянием магнитного поля электрическое сопротивление висмута увеличивается в большей степени, чем у других металлов; этим его свойством пользуются для измерения индукции сильных магнитных полей (прибор, служащий для этой цели, называется висмутовой спиралью). После расплавления висмута его электросопротивление падает вдвое, а при охлаждении резко возрастает (например, при понижении температуры от нуля до -180° С сопротивление этого металла увеличивается в 60 раз).
Рис. 1. Диаграмма состояния висмута при высоких давлениях. Пунктирные линии-приблизительные границы областей существования фаз.
Сечение захвата тепловых нейтронов у Висмута мало (34·10-31 м2 или 0,034 барна). Висмут и его соединения обладают дезинфицирующими и антисептическими свойствами. Он устойчив к действию кислорода и воды и растворим в концентрированной серной кислоте.
Висмут имеет ромбоэдрическую решетку с периодом а = 4,7457 Å и углом ά = 57°14'13". Удельная теплоемкость (20 °С) 123,5 Дж/(кг·К) [0,0294 кал/(г·°С)]; термический коэффициент линейного расширения при комнатной температуре 13,3·10-6; удельная теплопроводность (20 °С) 8,37 вт/(м·К) [0,020 кал/(см·сек·°С)]; удельное электрическое сопротивление (20° С) 106,8·10-8 ом·м (106,8·10-6ом·см). При температуре 120-150°С ковок; горячим прессованием (при 240-250°С) из него можно изготовить проволоку диаметром до 0,1 мм, а также пластинки толщиной 0,2-0,3 мм. Твердость по Бринеллю 93 Мн/м2 (9,3 кгс/мм2), по Моосу 2,5. При плавлении Висмут уменьшается в объеме на 3,27%.
Таблица 1. Характеристика некоторых кристаллических модификаций висмута.
Висмут в сухом воздухе устойчив, во влажном наблюдается его поверхностное окисление. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi2O3. В ряду напряжений Висмут стоит между водородом и медью, поэтому в разбавленной серной и соляной кислотах не растворяется; растворение в концентрированных серной и азотной кислотах идет с выделением SO2 и соответствующих оксидов азота.
Висмут проявляет валентность 2, 3 и 5. Соединения Висмута низших валентностей имеют основной характер, высших - кислотный. Из кислородных соединений Висмута наибольшее значение имеет оксид Bi2O3, при нагревании меняющий свой желтый цвет на красно-коричневый. Bi2O3 применяют для получения висмутовых солей. В разбавленных растворах висмутовые соли гидролизуются. Хлорид BiCl3 гидролизуется с выпадением хлороксида BiOCl, нитрат Bi(NO3)3 - с выпадением основной соли BiONО3·BiOOH. Способность солей Висмут гидролизоваться используется для его очистки.
Соединения 5-валентного Висмута получаются с трудом; они являются сильными окислителями. Соль КВiO3 (соответствующая ангидриду Bi2O5) образуется в виде буро-красного осадка на платиновом аноде при электролизе кипящего раствора смеси КОН, КСl и взвеси Bi2O3. Висмут легко соединяется с галогенами и серой. При действии кислот на сплав висмута с магнием образуется висмутин (висмутистый водород) BiH3; в отличие от арсина AsH3, висмутин - соединение неустойчивое и в чистом виде (без избытка водорода) не получено. С некоторыми металлами (свинцом, кадмием, оловом) Висмут образует легкоплавкие эвтектики; с натрием, калием, магнием и кальцием - интерметаллические соединения с температурой плавления, значительно превышающей температуры плавления исходных компонентов. С расплавами алюминия, хрома и железа висмут не взаимодействует.
Металлические свойства у него выражены посильней, но к этому его просто обязывает положение в таблице элементов: он ближе к "полюсу металличности" (левый нижний угол таблицы), чем другие элементы его подгруппы. В сухом воздухе висмут устойчив, но во влажном он облачается в тончайшее покрывало оксида. Если же металл нагреть выше 1000 °С, он сгорает красивым голубоватым пламенем.
Как известно, при электролизе ионы металла переносятся с анода на катод. Так считали почти полтора столетия - с тех пор как английский ученый Майкл Фарадей установил важнейшие законы электролиза. Но вот в 1975 году сотрудники Института общей и неорганической химии Академии наук УССР обнаружили, что некоторые металлы при электролитических процессах устремляются к аноду. В опытах украинских ученых катод был изготовлен из висмута, анод - из никеля, а роль электролита выполнял расплавленный едкий натр. Когда был включен ток, висмутовый катод начал таять на глазах, и уже вскоре на поверхности анода появились блестящие шарики из чистого висмута.
Это открытие не опровергает, а лишь уточняет закон Фарадея. Большинство металлов действительно выделяется на катоде, и лишь некоторые - висмут, свинец, олово, сурьма - "предпочитают" анод, правда, при условии, что электролитом служит расплав солей щелочных и щелочноземельных металлов.
"Поправка к закону" может быть использована для очистки многих металлов и сплавов от примесей висмута, свинца и других "нарушителей порядка". Для этого металлическую заготовку, которую нужно подвергнуть рафинированию, вводят в электролит в качестве катода. Начинается электролиз, и ненужные примеси, расставшись с основной массой металла, перебазируются на анод. Этот экономичный способ назван катодной очисткой.
Как известно, все металлы, да и вообще большинство твердых тел, имеют кристаллическую структуру, при которой их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке.
В ходе многочисленных опытов удалось установить, что если на переохлажденную металлическую пластинку, находящуюся в камере, где обеспечены указанные условия, нанести пары какого-либо металла, то на пластинке тут же образуется "стеклянная" пленка. Подобный эксперимент, в частности, был проделан с висмутом. Оказалось, что пленка из висмутового "стекла" толщиной всего в несколько микрон обладает буквально сказочными магнитными и сверхпроводящими свойствами. Даже при обычной температуре ее сопротивление электрическому току во много раз ниже, чем у того же висмута в кристаллическом состоянии.
Висмут помог советским физикам синтезировать ядра 107-го элемента периодической системы. Помещенная в ускоритель висмутовая мишень подверглась ожесточенной бомбардировке ионами хрома. Более двух месяцев непрерывно работал ускоритель, сопоставлялись и анализировались результаты десятков тончайших экспериментов, и вот, наконец, можно было с уверенностью заявить, что при слиянии иона хрома с ядром висмута образуются ядра 107-го элемента, период полураспада которых всего около двухтысячных долей секунды.
Основное количество Висмута добывается попутно при огневом рафинировании чернового свинца (веркблея). Пирометаллургический способ основан на способности Висмута образовывать тугоплавкие интерметаллические соединения с К, Na, Mg и Са. В расплавленный свинец добавляют указанные металлы и образовавшиеся твердые соединения их с Висмутом (дроссы) отделяют от расплава. Значительное количество Висмута извлекают из шламов электролитического рафинирования свинца в кремнефтористоводородном растворе, а также из пылей и шламов медного производства. Содержащие Висмут дроссы и шламы сплавляют под щелочными шлаками. Полученный черновой металл содержит примеси As, Sb, Cu, Pb, Zn, Se, Те, Ag и некоторых других элементов. Выплавка Висмута из собственных руд производится в небольшом масштабе. Сульфидные руды перерабатывают осадительной плавкой с железным скрапом. Из окисленных руд Висмут восстанавливают углем под слоем легкоплавкого флюса.
Для грубой очистки чернового Висмут применяются в зависимости от состава примесей различные методы: зейгерование, окислительное рафинирование под щелочными флюсами, сплавление с серой и другими. Наиболее трудноотделяемая примесь свинца удаляется (до 0,01%) продуванием через расплавленный металл хлора. Товарный Висмут содержит 99,9-99,98% основного металла. Висмут высокой чистоты получают зонной перекристаллизацией в кварцевых лодочках в атмосфере инертного газа.
Висмут получают сплавлением сульфида с железом:
Bi2S3 + 3Fe = 2Bi + 3FeS,
или последовательным проведением процессов:
2Bi2S3 + 9O2 = 2Bi2O3 + 6SO2↑;
Bi2O3 + 3C = 2Bi + 3CO↑.
висмут химический добыча
Висмутовые руды — природные минеральные образования, содержащие Висмут в количествах, при которых экономически целесообразно его извлечение современными методами производства.
Висмут – малораспространенный элемент. Его кларк (содержание в земной коре по массе) составляет 2х10-5% и по этому показателю он близок к серебру. Обратите внимание на двойственность поведения висмута в природе. С одной стороны, он может концентрироваться в минералах, а с другой – рассеиваться в рудах (особенно сульфидных) так, что содержание его в них можно определить лишь одним словом – «следы». Ярко выраженная способность висмута к образованию собственных минералов не позволяет отнести его к рассеянным элементам в общепринятом значении этого слова. В «чужие» кристаллические решетки он, как правило, не входит. Исключение – свинцовый минерал галенит PbS, в решетке которого при определенных условиях висмут может удерживаться без образования собственных минералов.
Тем не менее, скопления богатых висмутовых руд встречаются очень редко. Они крайне ограниченны в пространстве и отличаются неравномерностью распределения, что, конечно, доставляет огорчения геологам и горнякам, занимающимся разведкой и эксплуатацией висмутовых месторождений.
Минералы висмута как бы прячутся в рудах других элементов: вольфрама, олова, меди, никеля, молибдена, урана, кобальта, мышьяка, золота и других элементов – разных и непохожих.
Висмут встречается в природе в виде многочисленных минералов в основном гидротермального происхождения, главные из которых: висмутин или висмутовый блеск (Bi2S3), висмут самородный (Bi), бисмит или висмутовая охра (Bi2O3), тетрадимит (Bi2Te3) и пр. Эти минералы рассеяны и встречаются как примеси в свинцово-цинковых, медных, молибденово-кобальтовых и олово-вольфрамовых рудах (поэтому и добывается висмут как побочный продукт переработки полиметаллических руд). Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.
Висмут в том или ином количестве в виде изоморфной примеси входит в состав некоторых сульфидов, а также образует самостоятельные минералы. Известно около 90 минералов висмута, но промышленное значение имеют немногие из них: самородный висмут, висмутин, виттихенит, тетрадимит, галеновисмутит, козалйт, айкинит, бисмит, бисмутит.
Самородный висмут (содержание Bi 99,9 %) кристаллизуется в тригональной сингонии, кристаллы ромбоэдрические, псевдокубические, агрегаты зернистые, листоватые, перистые, дендриты. Цвет желтовато-белый, блеск металлический, твердость 2—2,5, плотость 9,8 г/см3.
Обнаруживает совершенную спайность. В свежем изломе серебристо-белый с желтоватым оттенком, обычно с красноватой побежалостью. Твёрдость по минералогической шкале 2,5, плотность 9780—9830 кг/м3. В. с. образуется в месторождениях скарнового типа и в гидротермальных месторождениях, в ассоциации с касситеритом, вольфрамитом, молибденитом, шеелитом и сульфидами Pb, Zn, Cu, Fe, а также в рудах, содержащих сульфиды и арсениды Со и Ni, урановую смолку, самородное серебро и др.
Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2×1019 лет.
Кроме 209Bi, известны ещё более трех десятков (пока 34) изотопов и ещё больше изомеров. Среди них есть три долгоживущих:
207Bi 31,55 год
208Bi 0,368×106 лет
210mBi 3,04×106 лет
Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.
Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215Bi получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.
Висмутин (англ. Bismuthinite) Bi2S3 (Bi 81,3 %) – минерал, сульфид висмута подкласса простых сульфидов кристаллизуется в ромбической сингонии, кристаллы призматические и игольчатые, цвет свинцово-серый, белый с желтоватой и синей побежалостью, блеск металлический, твердость 2—2,5, плотность 6,8 г/см3. Встречается в гидротермальных месторождениях жильного типа в ассоциации с топазом, бериллом, в золото-кварцевых жилах и медно-висмутовых месторождениях. Впервые обнаружен в 1832 г. в Боливии. Син.: бисмутин, висмутинит, висмутовый блеск.
Вi - 81,3 %, S - 18,7 %. Нередки примеси в небольших количествах РЬ, Сu, Fе, Аs, SЬ, Те и др. Из них РЬ, Sb и Те могут изоморфно замещать висмут.
Сингония ромбическая, ромбо-дипирамидальный вид симметрии 3L23PC. Простр. гр. Pbnm (D162b). a0 = 11,13; b0 = 11,27; c0 = 3,97. Кристаллическая структура аналогична структуре антимонита.
Хорошо образованные кристаллы редки, облик кристаллов призматический или игольчатый. Так же как и антимонит, встречается в удлинённых шестоватых кристаллах, образованных чаще всего гранями призм {110}, {120}, {130} и пинакоидов {100}, {010}, {001}. Большей частью грани покрыты тонкой вертикальной штриховкой.
Распространён также в виде сплошных зернистых масс, иногда лучистых или волокнистых агрегатов.
Цвет висмутина оловяно-белый до серебристо-белого со свинцово-серым оттенком. Часто наблюдается жёлтая или пёстрая побежалость. Непрозрачен. Черта серая. Блеск сильный металлический. Твёрдость 2 - 2,5. Спайность совершенная по {010} и несовершенная по {100} и {001}. Режется ножом, гибкий, но не упругий. Плотность 6,4 - 6,8, в отдельных случаях до 7,1. Электричества не проводит.
Диагностические признаки. От похожего на висмутин антимоииата отличается более сильным блеском, большим удельным весом в реакцией с КОН. В агрегатах он похож также на многие сложные по составу сульфоаптимониты и сульфовисмутиты, от которых без химических реакций его бывает нелегко отличить, а зачастую и невозможно. Под п. тр. на угле легко плавится, кипит и разбрызгивается вокруг во все стороны. В восстановительном пламени дает королёк висмута, оставляя на угле лимонно-жёлтый налёт окиси висмута. Характернейшей реакцией на висмут является получение йодистого висмута в виде ярко-красного налёта при сплавлении с йодистым калием (в виде каймы вокруг пробы). В HNO3 легко растворяется с выделением всплывающей серы.
Висмутин встречается исключительно в высокотемпературных гидротермальных месторождениях, связанных с грейзенами или скарнами. В качестве минерала-спутника наблюдается в месторождениях олова, вольфрама, мышьяка, часто в ассоциации с самородным висмутом, арсенопиритом, халькопиритом, иногда самородным золотом, топазом, бериллом, пиритом, галенитом и многими другими сульфидами. Очень редко образует самостоятельные месторождения.
В зоне окисления легко разрушается, образуя основные карбонаты в виде псевдоморфоз по висмутину.
В России известен в олово-вольфрамовых высокотемпературных кварцевых жилах Белухи и Букуки с кварцем, касситеритом, арсенопиритом, сфалеритом, халькопиритом, галенитом и самородным висмутом, в оловоносных грейзенах Шерловой Горы (Восточное Забайкалье). Встречается на всех скарновых месторождениях Дальнегорска (Приморье) в виде вкрапленности, гнёзд и включений в полиметаллической и боросиликатной руде. Существенный интерес представляют месторождения Средней Азии, например скарны Устарасая (в 70 км. к северо-востоку от г. Ташкента), где висмутин с самородным висмутом встречается в ряде кварцевых жил в известняках в ассоциации с пиритом, арсенопиритом, халькопиритом и др.
Крупнейшие в мире висмутовые месторождения находятся в Боливии (Тасна, Чоролк и др.) и в Перу (Серро-де-Паско) и генетически связаны с молодыми изверженными породами.
Из других зарубежных месторождений стоит отметить: месторождения Рудных гор (Нижняя Саксония, Германия), Коннектикут (США), Мексика, Великобритания, Швеция, Италия (окрестности Турина), Чехия, Венгрия, Румыния. Характерен для оловянно-свинцово-цинковых месторождений Японии.
Виттихенит минерал состава SCu 2S.Bi2S3 (Bi 42,15 %) кристаллизуется в ромбической сингонии, кристаллы тетраэдрические, агрегаты зернистые, цвет темно-серый до светло-серого, черта черная, блеск металлический, твердость 2—3, плотность 6,3 г/см3. Встречается в гидротермальных жилах богатых медью и висмутом.
Тетрадимит Вi2Те2S (Bi 59,27 %) кристаллизуется в тригональной сингонии, кристаллы ромбоэдрические, агрегаты листоватые и зернистые. Цвет стально-серый, блеск металлический, твердость 1,5—2, плотность 7,3 г/см3. Распространен в гидротермальных и контактово-метасомати-ческих месторождениях. Кристаллическая структура типичная слоистая. Пятнадцатислойная плотнейшая ромбоэдрическая упаковка содержит в вертикальном периоде повторяемости три идентичных пакета, состоящих из пяти слоёв, каждый из которых сложен атомами своего рода. Состав и порядок заполнения слоёв в каждом пакете следующий: ТеВiSВiТе.
Таблитчатые или ромбоэдрические кристаллы чаще всего являются четверниками с плоскостью срастания по {0118) и {0115). Встречается преимущественно в виде листоватых или пластинчатых агрегатов.
По многим внешним признакам похож на молибденит; отличается от него более сильным блеском, большим удельным весом.
В России он встречен во Фроловском руднике из группы Турьинских рудников (Северный Урал), Шилово-Исетском золоторудном месторождении (в 66 км. к востоку от Екатеринбурга), в ряде пунктов Западной и Восточной Сибири. Отмечен с золотом, гесситом и висмутином в кварцевых жилах Дарасунского месторождения (Восточное Забайкалье). Совместно с пиритом, висмутом и цумоитом (ВiТе) наблюдается в кальцитовых жилах, вмещаемых гранат-диопсидовыми скарнами Тырныауза (Кабардино-Балкария, Северный Кавказ).
В Северо-Западном Казахстане отмечен в кварцевых золотосодержащих жилах месторождения Кумак. Наблюдался также в ряде золоторудных месторождений США, Мексики, Британской Колумбии и др.
Галеновисмутит PbBi2S4 (Bi 55,48 %) кристаллизуется в ромбической сингонии, кристаллы игольчатые, столбчатые пластинчатые, агрегаты зернистые. Цвет минерала оловянно-белый до светло-серого, черта светло-серая, блестящая, твердость 2,5—3,5, плотность 7,1 г/см3. Встречается в высокотемпературных месторождениях висмута, скарнах и золото-кварцевых жилах.
Козалит Pb2Bi2S5 (Bi 42,10%) (по руднику Козала в Мексике) кристаллизуется в ромбической сингонии, кристаллы призматические, игольчатые, агрегаты шестоватые, лучистые, зернистые, цвет свинцово-серый, черта черная, твердость 2,5—3, плотность 6,7—7,0 г/см3.
Айкинит CuPbBiS3 (Bi 36,29 %) (по фамилии Айкин) кристаллизуется в ромбической сингонии, кристаллы длинностолбчатые до игольчатых, агрегаты зернистые и друзы. Цвет минерала серый с цветной побежалостью, черта серовато-черная, блестящая, твердость 2—2,5, плотность 7,1 г/см3.
Бисмит Bi2О3 (Bi 89,6 %) кристаллизуется в моноклинальной сингонии, кристаллы псевдоромбические, агрегаты тонкозернистые и порошковатые, цвет серовато-зеленый, желтый, блеск полуалмазный, матовый, твердость 4,5, плотность 9,2 г/см3. Развит в зоне окисления.
Традиционные потребители висмута – металлургическая, фармацевтическая и химическая промышленность. В последние десятилетия к ним прибавились ядерная техника и электроника. Широкому применению висмута в металлургии и электронике способствовало и то обстоятельство, что висмут – наименее токсичный из всех тяжелых металлов.
Из соединений висмута шире всего используют его трехокись Bi2O3. В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств. В производстве полимеров трехокись висмута служит катализатором; ее применяют, в частности, при получении акриловых полимеров. Bi2O3 употребляют также в производстве эмалей, фарфора и стекла – главным образом в качестве флюса, понижающего температуру плавления смеси неорганических веществ, из которой образуются эмаль, фарфор или стекло. Соли висмута находят применение в областях, весьма далеких друг от друга. Это, к примеру, производство перламутровой губной помады и производство красок для дорожных знаков. Далеко в прошлое ушло то время, когда висмут считался малоценным металлом с ограниченной сферой применения. Сейчас он нужен всем странам с высокоразвитой промышленностью. Поэтому и спрос на него продолжает расти.
Собственно висмутовые месторождения имеют ограниченное распространение и обычно этот металл образует комплексные руды с другими металлами в ряде рудных формаций гидротермальных месторождений. Среди них выделяются следующие:
1. Вольфрам-медно-висмутовые
2. Месторождения пятиэлементной формации (Co-Ni-Bi-Ag-U)
3. Золото-висмутовые
4. Мышьяк-висмутовые
5. Медно-висмутовые
6. Кварц-висмутовые
Трудно назвать рудное месторождение, в котором не было бы висмута, но еще сложнее назвать такое месторождение, в котором концентрация его была бы столь высокой, что оно могло бы с выгодой разрабатываться только ради висмута. Как же быть? Поступают просто: висмут берут отовсюду, где извлечение его экономически (или технологически) оправдано. Вот перечень сырьевых источников висмута, обеспечивающих около 3/4 мирового (без СССР) спроса: медные, свинцовые и серебряные рудники Перу, свинцовые месторождения Мексики, медные и свинцово-цинковые руды Японии, медные, свинцовые и серебряно-кобальтовые месторождения Канады, вольфрамово-оловянные и оловянно-серебряные руды Боливии.
За исключением боливийских, все перечисленные руды висмутом бедны. Основной производитель висмута – свинцовая промышленность – извлекает его из концентратов, в которых не больше сотых, реже десятых процента висмута, а в исходных рудах полиметаллических месторождений от 0,0001 до 0,01% Bi. Та же примерно картина наблюдается и в медной промышленности. Обычно висмут здесь извлекают из анодных шламов, образующихся при электролитическом рафинировании меди. Источником висмута может быть и вторичное сырье. Например, в ФРГ значительное количество висмута извлекают при переработке пиритных огарков и из металлического лома. Сколько же висмута получают ежегодно во всем мире? Известно, что в 1968 г. мировое производство висмута (без СССР) составило 3800 т. Предполагают, что мировая потребность в висмуте в 2000 г. составит 5...6 тыс. т.
Эндогенные месторождения висмута формировались на средней и поздней стадиях геосинклинального этапа, а также в процессе тектономагматической активизации консолидированных участков складчатых областей и платформ. Собственно висмутовые месторождения не имеют широкого распространения и обычно этот металл образует комплексные руды с другими металлами в ряде рудных формаций. Месторождения висмута и висмутсодержащих руд формировались в различные эпохи рудообразования. В докем-брийскую эпоху образовались месторождения висмутсодержащих руд в Канаде (Большое Медвежье озеро, Эльдорадо и др.), в позднепалеозойскую (герцинскую) — месторождения в Рудных горах (Яхимов в Чехии), Средней Азии (Адрасман в Таджикистане, Брич-Мулла и Устарасай в Узбекистане), в мезозойскую эпоху — месторождения в Южной Корее (Санг-Донг и др.). Значительное количество месторождений висмутсодержащих руд принадлежит альпийской металлогенической эпохе (Таена в Боливии, Сан-Грегори в Перу).
Минерально-сырьевая база висмутодобывающей промышленности представлена как собственно висмутовыми, так и комплексными висмутсодержащими месторождениями. Общие запасы висмута в мире (без учета стран СНГ) составляют около 130 тыс. т. Ведущими странами-держателями запасов висмута являются: Япония (более 40 тыс. т), США (30 тыс. т) и Австралия (20 тыс. т). Значительные запасы этого металла сосредоточены в Боливии, Мексике, Перу, Канаде, Китае, России и других странах. Уникальные месторождения висмута встречаются редко (месторождение Теннант-Крик в Австралии). Богатые руды содержат Bi более 1 %, рядовые — 1—0,2 %, бедные — менее 0,2 % (в комплексных рудах).
В мировой практике висмут в основном добывается в качестве попутного компонента из комплексных руд: Со-Ni—Bi—Ag—U, As—Bi, Cu—Bi, а также из висмутсодержащих свинцовых и медных руд. Общая добыча и производство висмута составляла: в 1937 г. — 600—700 т, в 1960 г. -2600 т, в 1975 г. - 5380 т и в 2000 г. - более 10000 т. Главными производителями висмута в настоящее время являются Боливия, Перу, Мексика, Австралия и США.
Известны следующие типы месторождений висмутовых и висмутсодержащих руд:
1) грейзеновые,
2) скарновые,
3) плутоногенные гидротермальные,
4) вулканогенные гидротермальные.
Грейзеновые месторождения представлены комплексными W— Sn—Bi рудами. Формирование их связано с аляски-товыми гранитами. Рудные тела имеют форму штокверков, труб и жил, приуроченных к трещинам скола. Наиболее характерным и хорошо изученным представителем этого типа является месторождение Альтенберг в Германии. В рудах месторождения помимо олова и вольфрама содержится висмут в виде висмутина и самородного висмута.
Скарновые месторождения пространственно связаны с гранат-пироксеновыми и другими известковистыми скарнами. Они формируются на контакте гранитоидов с карбонатными породами или на некотором удалении от этого контакта и реже в гранитоидах. Это, как правило, комплексные W—Mo—Bi месторождения. Главными рудными минералами являются шеелит, молибденит, висмутин, второстепенными — касситерит, магнетит, пирротин, пирит, арсенопирит, вольфрамит, халькопирит, сфалерит и галенит. Месторождения этого типа выявлены в России (Восток-П в Приморье, Тырныаузское на Северном Кавказе), Южной Корее (Санг-Донг), Канаде (Эмеральд-Фини) и других странах.
Плутоногенные гидротермальные месторождения известны в Узбекистане (Брич-Мулла, Устарасай), Германии (Нейбулак, Шнееберг), Перу (Сан-Грегори), США (Монте-Кристо), Канаде (Эльдорадо). Оруденение связано с гранитоидными интрузиями. Рудные тела представлены в основном жилами и линзами. Среди месторождений этого типа выделяются две формации — арсенопирит-висмутовая и пятиэлементная (Со—Ni—Ag—Bi—U). В качестве примера месторождений арсенопирит-висмутовой формации охарактеризуем месторождение Устарасай. Оно расположено в Узбекистане в пределах Брич-Муллинского рудного поля (Чаткальский хребет). Участок месторождения сложен кварцитами, песчаниками, известняками и доломитами верхнего девона.
Интрузивные породы представлены штоком монцонитов, дайками сиенит-аплитов, а также гранодиоритами и дайками диабазов и диабазовых порфиритов. Верхнедевонские отложения слагают юго-восточное крыло Коксуйской антиклинали, осложненной продольными разломами, надвигами и крутыми сбросами. Оруденение развито в известняках в виде секущих кварц-висмутовых жил, пластообразных рудных залежей и столбообразных мышьяк-висмутовых метасоматических тел.
Формирование месторождения протекало в течение трех стадий: мышьяковую, свинцово-висмутовую и свинцово-сурьмяную.
Первая стадия проявлена слабо и представлена метасоматическими пластообразными телами, сложенными арсенопиритом (70-80 %) и кварцем (20-30 %).
Вторая стадия характеризовалась образованием разнообразных рудных минералов — пирита, пирротина, висмутина, самородного висмута, висмутовых сульфосолей и жильных минералов (кварц, доломит, кальцит).
Третья стадия минерализации развита незначительно в виде маломощных (до 2—7 см) крутопадающих жил. На этой стадии выделялись кварц и ассоциирующие с ним сфалерит, галенит, буланжерит, бурнонит, арсенопирит.
Вулканогенные гидротермальные месторождения висмута встречаются относительно редко. Они известны в Таджикистане (Адрасман), Швейцарии (Аннивере), Германии (Шварцвальд), Италии (Бочегиано), Боливии (Таена). Генетически тесно связаны с вулканогенными комплексами дацит-риолитовой формации, а пространственно — с субвулканическими дайками, жерловинами и некками и локализуются в вулканических структурах, синвулканических разломах и трещинах. Рудные тела представлены ветвящимися жилами, линзами, штокверками, реже трубами. Глубина формирования месторождений 0,5—1,0 км. Среди них выделяются халькопирит-висмутовая и касситерит-вольфрамит-висмутовая рудные формации. Типичным представителем халькопирит-висмутовой рудной формации является месторождение Адрасман. Оно расположено в Восточном Карамазаре (Таджикистан). Участок сложен верхнепалеозойской эффузивной толщей. Собственно месторождение приурочено к некку кварцевых порфиров и контролируется пересечением разломов субширотного и субмеридионального направлений. Главное рудное тело имеет трубообразную форму и прослеживается на глубину более 200 м от земной поверхности. Другие рудные тела представлены линзами, штокверками и жилами. Разрывные нарушения, определяющие положение Главной зоны и Свинцового разлома, являются наиболее древними. В последующее время движения по Свинцовому разлому возобновлялись. Они фиксируются приуроченностью к нему на отдельных участках даек кварцевого сиенит-порфира и диабазового порфирита, более молодых, чем туфолавы, слагающие некк. Дальнейшее развитие месторождения связано с проявлением гидротермальной деятельности. Наиболее ранние гидротермальные образования представлены кварц-сульфидно-висмутовыми метасоматическими телами и рудными жилами, сложенными кварцем, халькопиритом, висмутом и другими медно-висмутовыми минералами. Вторая стадия характеризовалась развитием кварцевых жил и метасоматических тел тонкозернистого халцедоновидного кварца с галенитом и халькопиритом. Главная рудоносная зона представляет собой минерализованный тектонический разрыв, в висячем боку которого развиты многочисленные рудоносные жилы северовосточного простирания. Главные рудные минералы: пирит, гематит, арсенопирит, висмутин, самородный висмут, борнит, сфалерит.
Висмут относится к малоподвижным водным мигрантам и его концентрация в подземных водах составляет около 20 мкг/дм3, в морских водах - 0.02 мкг/дм3. В таких концентрациях висмут не оказывает негативного влияния на качество воды, по крайней мере у Всемирной Организации Здравоохранения нет таких данных, соответственно нет и рекомендаций ВОЗ по содержанию висмута в воде. Предельно допустимая концентрация в воде (ПДК) для висмута установлена российскими СанПиН на уровне 0.1 мг/л или 100 мкг/л. Практически превышено ПДК может быть только в районе сброса висмут содержащих строчных вод.
Технология удаления из воды – обратный осмос, ионный обмен, дистилляция.
Не смотря на то, что висмут относится к категории тяжелых металлов, он является умеренно токсичным элементом. Некоторые источники даже называют висмут "самым безобидным" тяжелым металлом. Будучи очень близок по своим свойствам к свинцу, висмут намного менее ядовит. В связи с этим экологи ратуют за постепенную замену свинца в промышленных и производственных процессах на висмут.
Все вышесказанное, тем не менее, отнюдь не означает, что висмут совершенно безопасен. Например, растворимые соли висмута ядовиты и по характеру своего воздействия (хоть и в меньшей степени) аналогичны солям ртути. Другое дело, что водорастворимых солей висмута очень мало и, соответственно вероятность встречи с ними невелика. Используемые же в медицине соли висмута, о которых шла речь ранее, фактически нерастворимы в воде, применяются в виде коллоидных растворов и не имеют высокой токсичности. Однако при длительном или интенсивном приеме содержащих висмут препаратов возможно возникновение осложнений. Одно из основных проявлений - так называемая "висмутовая кайма" - воспаление возникающее из-за отложения сернистого висмута по краям десен. Возможны нарушения и со стороны мочевыводящих путей.
Висмут в организме человека депонируется в почках, печени, селезенке т костной ткани. Выводится висмут через желудочно-кишечный тракт, с мочой и потом. Процесс выведения очень длительный. Канцерогенность висмута не установлена.
Профессиональные отравления или кожных заболевания при работе с висмутом почти не отмечаются. Однако хроническое отравление висмутом может привести к изменению белкового, углеводного и липидного обменов, снижению содержания гемоглобина в крови и другим нарушениям. Подробнее о клинических проявлениях отравления висмутом можно узнать на сайте МНИИ Педиатрии и детской хирургии.
Уровень знаний сегодняшнего дня позволяет сделать вывод об отсутствии какой-либо физиологической роли висмута в организме человека.
Висмут относится к токсичным ультрамикроэлементам. В организм человека висмут поступает в основном с пищей, а также с воздухом и водой, в количестве 5-20 мкг/сутки. Всасывание висмута, поступившего в желудочно-кишечный тракт, незначительно и составляет около 5%. После всасывания висмут обнаруживается в крови в виде соединений с белками, а также проникает в эритроциты. Между органами и тканями висмут распределяется относительно равномерно. Некоторое накопление висмута может наблюдаться в печени, почках (до 1 мкг/г), селезенке и костях. Обнаруживается висмут и в головном мозгу.
Висмут, прошедший через желудочно-кишечный тракт, выделяется в виде сульфида висмута, окрашивая кал в темный цвет. Резорбированный висмут выделяется с мочой.
О физиологической роли висмута известно немного. Висмут индуцирует синтез низкомолекулярных белков, принимает участие в процессах оссификации, образует внутриклеточные включения в эпителии почечных канальцев. Возможно, этот элемент обладает генотоксичными и мутагенными свойствами.
Токсическая доза для человека: данные отсутствуют.
Летальная доза для человека: данные отсутствуют.
Индикаторы элементного статуса висмута.
Оценка содержания висмута в организме проводится по результатам исследований биосубстратов – мочи, крови, волос и биоптатов. При хронической интоксикации висмутом определяют его концентрацию в суточной моче. В норме концентрация висмута в моче не превышает нескольких микрограмм на миллилитр.
Пониженное содержание висмута в организме. Данные о клинических проявлениях, вызываемых дефицитом висмута, отсутствуют.
Повышенное содержание висмута в организме. Интоксикация обычно наблюдается лишь при длительном воздействии на организм солей висмута в больших дозах. Тем не менее, встречаются случаи ятрогенных, профессиональных и бытовых отравлений.
Механизм токсического действия висмута изучен мало. Установлено, что при отравлении солями висмута поражаются почки, ЦНС, печень, кожа и слизистые оболочки. Длительный прием препаратов висмута в больших дозах может вызвать симптомы "висмутовой" энцефалопатии (особенно у больных с нарушением функции почек). Опасным считается хроническое поступление висмута в количествах 1-1,5 грамма в день.
Причины избытка висмута: избыточное поступление.
Основные проявления избытка висмута:
· снижение памяти, бессонница;
· признаки поражения нервной системы (нарушения чувствительности, регидность затылка);
· слабость сердечной деятельности, аритмии;
· появление темной каймы вокруг десен, пигментация слизистой оболочки десен и полости рта;
· стоматит, фарингит, затруднение глотания;
· слюнотечение, тошнота, рвота, боли в животе, метеоризм, понос;
· токсический гепатит с жировой дегенерацией и циррозом;
· альбуминурия, цилиндры в моче;
· "висмутовые" дерматиты;
· потеря аппетита, упадок сил, исхудание.
Синергисты и антагонисты висмута не известны.
Коррекция избытка висмута в организме. На ранних стадиях отравления принимают меры к прекращению поступления солей висмута; для удаления неабсорбированной части висмута промывают желудок и назначают слабительные средства, проводят хелатирующую терапию. БАЛ способствует снижению уровня висмута в головном мозге, а ДМПС в других тканях организма. БАЛ эффективен также при лечении везикулярной эритродермы. Отмечен положительный эффект при введении димеркаптола (800-1200 мкг/сутки). При поражениях почек показано проведение гемодиализа.
Традиционные потребители висмута – металлургическая, фармацевтическая и химическая промышленность. В последние десятилетия к ним прибавились ядерная техника и электроника.
Чтобы спаять стекло с металлом, используют легкоплавкие сплавы на висмутовой основе. Подобные же сплавы (с кадмием, оловом, свинцом) применяют в автоматических огнетушителях. Как только температура окружающей среды достигает 70°С, плавится пробка из висмутового сплава (49,41% Bi, 27,67% Рb, 12,88% Sn и 10,02% Cd) и огнетушитель срабатывает автоматически.
Легкоплавкость висмута стала одной из причин прихода его в ядерную энергетику. Но были и другие. Только бериллию (из всех металлов) уступает висмут по способности рассеивать тепловые нейтроны, почти не поглощая их при этом. Висмут используют в качестве теплоносителя и охлаждающего агента в ядерных реакторах. Иногда в «горячей зоне» реактора помещают уран, растворенный в жидком висмуте.
Самым первым способом извлечения плутония из облученного урана был метод осаждения плутония с фосфатом висмута. Совместно с фтористым литием LiF эта соль работала в первых промышленных установках по производству плутония. Облученный нейтронами уран растворяли в азотной кислоте, а затем в этот раствор добавляли H2SO4. С ураном она образовывала нерастворимый комплекс, а четырехвалентный плутоний оставался в растворе. Отсюда его осаждали с BiPO4, отделяя тем самым от массы урана. Сейчас этот метод уже не применяют, но о нем стоило упомянуть хотя бы потому, что опыт, полученный благодаря этому методу, помог создать более совершенные и современные способы выделения плутония осаждением его из кислых растворов.
С помощью висмута получают изотоп полоний-210, служащий источником энергии на космических кораблях.
Применение висмута в металлургии тоже довольно широко. Кроме упоминавшихся уже легкоплавких сплавов и припоев, висмут (примерно 0,01%) используют в сплавах на основе алюминия и железа. Эта добавка улучшает пластические свойства металла, упрощает его обработку.
Некоторые висмутовые сплавы обладают уникальными магнитными свойствами. Сильные постоянные магниты делают из сплава, состав которого определяется формулой MnBi. А сплав состава 88% Bi и 12% Sb в магнитном поле обнаруживает аномальный эффект магнетосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.
Многие сплавы висмута при низкой температуре приобретают свойство сверхпроводимости.
Широкому применению висмута в металлургии и электронике способствовало и то обстоятельство, что висмут – наименее токсичный из всех тяжелых металлов.
Из соединений висмута шире всего используют его трехокись Bi2O3. В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.
В производстве полимеров трехокись висмута служит катализатором; ее применяют, в частности, при получении акриловых полимеров. Bi2O3 употребляют также в производстве эмалей, фарфора и стекла – главным образом в качестве флюса, понижающего температуру плавления смеси неорганических веществ, из которой образуются эмаль, фарфор или стекло.
Соли висмута находят применение в областях, весьма далеких друг от друга. Это, к примеру, производство перламутровой губной помады и производство красок для дорожных знаков, которые «загораются» в лучах автомобильных фар...
Далеко в прошлое ушло то время, когда висмут считался малоценным металлом с ограниченной сферой применения. Сейчас он нужен всем странам с высокоразвитой промышленностью. Поэтому и спрос на него продолжает расти.
Висмут входит в разнообразные сплавы со свинцом, оловом, кадмием и мышьяком. Их особенность состоит в том, что они плавятся при температурах, гораздо менее высоких, чем точка плавления отдельных входящих в их состав металлов. В связи с этим они применяются для автоматических огнетушителей, а также для электрических предохранителей, предохранительных пробок паровых котлов. Благодаря способности висмута расширяться при затвердевании он используется для изготовления линейных форм, для производства отливок изящных предметов и для гальванопластики. В металлургии висмут применяется как добавка к нержавеющим сталям. Он широко используется также в производстве оптических стекол и стекол с защитными свойствами против радиации, в химической промышленности (в качестве катализатора), в керамике (изготовление цветных эмалей и глазури), в электронике, ядерной технике, а также в фармацевтической промышленности.
Висмут является главным компонентом сплава Вуда. В одном из алхимических словарей висмут описывается как "всякий легчайший, бледнейший и дешевейший свинец".
Еще в старину соединения висмута широко применялись как краски, грим, косметические средства. Так, на Руси, например, представительницы слабого пола охотно пользовались различными белилами, в том числе и висмутовыми, которые иногда назывались также испанскими. Один англичанин, посетивший русское государство в середине XVI века, отмечал, что женщины "так намазывают свои лица, что почти на расстоянии выстрела можно видеть налепленные на лицах краски; всего лучше их сравнить с женами мельников, потому что они выглядят так, как будто около их лиц выколачивали мешки муки".
В технике висмут издавна известен своими легкоплавкими сплавами. Вот что написано в одной из книг, изданных более ста лет назад: "В сплавах висмут употребляется единственно потому, что он придает им легкоплавкость. Оттого этим металлом пользуются оловянщики и органщики, когда им надобно иметь особенно легкоплавкий препарат. Оловолитчики также прибавляют немного висмута для облегчения расплавления металла, чем, конечно, не улучшают своего товара, потому что висмут делает все сплавы ломкими".
Сегодня уже не применяют висмут в качестве компонента типографского сплава, но в других областях различные сплавы висмута находят немало работы.
Применяется также при производстве автоматических огнетушителей с плавкими предохранителями из сплава висмута с другими металлами. Стоит температуре в помещении превысить определенный уровень, проволочка из этого сплава расплавляется, срабатывает реле и резкий звонок предупреждает о грозящей опасности. Есть и такие устройства, которые не только сигнализируют о пожаре, но и сами, не дожидаясь помощи со стороны, обрушивают на пламя потоки воды.
Сплав висмута со свинцом и ртутью плавится уже при трении и потому используется для изготовления металлических карандашей. Легкоплавкие сплавы на висмутовой основе позволяют надежно спаять стекло с металлом. Из сплава Вуда можно отлить чайную ложечку, которая расплавится при первом же перемешивании ею горячего чая.
Этот сплав обладает и высокими литейными свойствами, благодаря чему легко заполняет мельчайшие детали формы. Из него делают модели для отливки сложных деталей, он применяется для заливки металлографических шлифов, "принимает участие" в зубоврачебном протезировании.
Для некоторых сплавов висмута характерны уникальные магнитные свойства. Так, из его сплава с марганцем изготовляют сильные постоянные магниты. Сплав висмута с сурьмой, обнаруживающий в магнитном поле аномальный эффект магнитосопротивления, используется для производства быстродействующих усилителей и выключателей. Добавка висмута (всего 0,01%) к сплавам на основе алюминия и железа улучшает пластические свойства материала, упрощает его обработку. Такую же услугу оказывает висмут и нержавеющей стали.
А олову он помогает излечиться от "оловянной чумы": при низких температурах этот металл рассыпается в порошок. Причина этого – переход одной разновидности олова в другую, с более свободным расположением атомов в кристаллической решетке (так называемое белое олово превращается в серое). Атомы же висмута, добавленные к олову, как бы цементируют его решетку, не давая ей разрушиться при перестройке, вызванной таким превращением. Весьма перспективны соединения висмута с теллуром в качестве материала для термоэлектрогенераторов. Благоприятное сочетание теплопроводности, электропроводности и термоэлектродвижущей силы обусловливает высокий коэффициент полезного действия преобразования тепловой энергии в электрическую. Первая батарея термоэлементов, созданная примерно полтора столетия назад, была выполнена из спаянных проволочек сурьмы и висмута.
В космонавтике, медицине и многих других областях используется сегодня термоэлектрическое охлаждение. Еще в 1834 году французский физик Жан Пельтье заметил, что если через электрическую цепь, состоящую из проводников разного типа, скажем железа и висмута, пропустить постоянный ток, то в месте их соединения поглощается некоторое количество теплоты. Это явление, названное эффектом Пельтье, долгое время не находило практического применения, так как возникающее в месте соединения металлов охлаждение было очень незначительным.
Но вот спустя более ста лет советский академик А. Ф. Иоффе предложил заменить металлы в термоэлектрических устройствах полупроводниковыми материалами, в частности соединениями висмута, теллура, селена и сурьмы. Вот тогда-то эффект Пельтье стал поистине эффективным средством охлаждения. Оказалось возможным создание на его основе холодильника нового типа, в котором переносчиком тепла служат не жидкости или газы, как в обычном холодильнике, а электроны. Крохотные электронные холодильники, величиной с наперсток, плавно понижают температуру до -50 °С. Важной особенностью таких холодильников является то, что их легко можно превратить в... нагреватели: для этого нужно лишь изменить направление тока.
Соединения висмута можно встретить во многих сферах современной техники. Триоксид этого металла служит катализатором при получении акриловых полимеров. В качестве флюса, снижающего температуру плавления некоторых неорганических веществ, ее используют также в производстве стекла, эмали, фарфора. Висмутовые соединения вводят в состав стекол, если нужно повысить их коэффициент преломления. Соли висмута применяются при изготовлении красок для дорожных знаков, "вспыхивающих", когда на них падает луч автомобильной фары. Известные с давних пор косметические наклонности висмута проявляются сегодня в создании с помощью его солей перламутровой губной помады.
В последние годы внимание многих ученых приковано к явлению сверхпроводимости. Открытое еще в 1911 году голландским физиком X. Камерлинг-Оннесом, это свойство некоторых металлов и соединений - вблизи абсолютного температурного нуля практически беспрепятственно пропускать электрический ток - долгое время представляло лишь сугубо научный интерес. Бурное развитие науки и техники во второй половине XX века связало со сверхпроводимостью грандиозные практические перспективы, прежде всего в области энергетики. Но чтобы перспективы стали реальностью, нужно отодвинуть как можно дальше от абсолютного нуля порог сверхпроводимости, т. е. ту критическую температуру, при которой вещество скачкообразно теряет способность сопротивляться электрическому току. Поиски ученых направлены на создание так называемых высокотемпературных сверхпроводников - материалов, способных обретать это свойство при сравнительно легко достижимых температурах. По мнению ряда специалистов, такими материалами могут стать полимеры, "начиненные" мельчайшими частицами металлов.
Не так давно российские химики сделали первый шаг на пути решения этой проблемы. Подвергая электролизу водный раствор солей свинца и висмута в присутствии толуольного раствора полидифенилбутадиена, они сумели получить металлополимер, содержащий около 80% дисперсных (диаметром несколько микрон) частичек свинцововисмутового сплава. Поскольку металл внедрялся в полимер в момент образования из соли, не успевая окислиться, поверхность частиц была почти идеально чистой. Как показали испытания нового материала, температура перехода его в сверхпроводящее состояние, хоть и далека от желаемой, но заметно выше, чем у чистого сплава того же состава. Значит, можно надеяться, что следующие шаги в этом направлении позволят достичь намеченной цели.
Любопытные результаты получили и американские ученые из Мичиганского университета. Они обнаружили, что висмут, "загрязненный" небольшим количеством атомов олова или теллура, при температурах 0,03-0,06 К обретает сверхпроводимость, в то время как чистый металл этим свойством обделен. Изменяя концентрацию примеси, можно несколько смещать порог проводимости висмута в ту или другую сторону.
До сих пор речь шла о сплавах и химических соединениях висмута. Но свою, пожалуй, самую важную и ответственную роль – теплоносителя в ядерных реакторах - он предпочитает исполнять в гордом одиночестве. На эту роль металл приглашен не случайно: плавится он при сравнительно низкой температуре (271 °С), а кипит при довольно высокой (1560 °С). Широкий интервал температур, при которых висмут пребывает в жидком состоянии, в сочетании с химической стойкостью, пожарной безопасностью и, что самое главное, способностью рассеивать тепловые нейтроны, почти не поглощая их при этом (т. е. не тормозя цепную реакцию), выдвигают висмут в число лучших ядерных теплоносителей. Перспективно и использование его в реакторах с жидкометаллическим топливом - ураном, растворенным в расплавленном висмуте.
У висмута есть еще целый ряд интересных свойств. В отличие от большинства металлов, он очень хрупок и легко растирается в порошок, но горячим прессованием из него можно изготовить тонкую проволоку и пластинки. Почти все металлы при затвердевании уменьшаются в объеме, а висмут, благодаря своеобразию кристаллической структуры, напротив, расширяется (то же происходит и с водой при ее превращении в лед). По-видимому, этим обусловлена и другая особенность поведения висмута. С ростом давления температура плавления веществ обычно повышается. Этому правилу подчиняются все металлы, а для висмута, оказывается, закон не писан: чем выше давление, тем легче он "соглашается" перейти в жидкое состояние.
Соединения висмута нашли свое применение и в медицине. Фармацевтическая промышленность - один из основных потребителей этого металла. Уже 150 лет назад некоторые соединения висмута применялись как обеззараживающее и подсушивающее средство, в частности для лечения сифилиса и неспецифических воспалительных процессов. Давно известно и до сих пор используется благотворное влияние некоторых нерастворимых солей висмута (например, нитрата) при лечении воспалительных заболеваний кишечника (колиты, энтериты), а также язвенной болезни желудка и двенадцатиперстной кишки. Причем значение висмута в медицине со временем не падает, а даже растет. Так, недавно было установлено, что соли висмута являются практически единственным активным веществом, способным убить бактерии Helicobacter Pylori, вызывающих язвенную болезнь. Последние исследования показывают также, что предварительное принятие висмут содержащих препаратов способно снизить токсический эффект от противораковой химеотерапии и, возможно, такие препараты могут оказаться эффективными и при лечении СПИДа.
Субгаллат висмута при нанесении на кожу и слизистые оболочки вызывает уплотнение коллоидов внеклеточной жидкости, слизи, экссудата и образует защитную пленку, предохраняющую окончания чувствительных нервов от раздражения, которая способна снижать болевые ощущения и препятствовать развитию отека.
Субнитрат висмута в виде мазей и присыпок используется как защитное и противовоспалительное средство при дерматите, экземе, эрозиях и язвах кожи. При назначении внутрь в виде суспензий, гелей или таблеток соли висмута (субсалицилат калия, дицитрат трикалия, субнитрат калия и ряд других), образуют на поверхности слизистых оболочек желудочно-кишечного тракта защитную пленку, – хелатные соединения с белковым субстратом. Эта пленка способствует уменьшению местного воспалительного процесса, заживлению пептических язв и снижению числа рецидивов. Препараты висмута обладают антибактериальным действием (подавляют рост Helicobacter pylori). Комбинированные препараты, в состав которых входит нитрат висмута основной (викалин, викаир) оказывают вяжущее, противокислотное и умеренное слабительное действие. Соединения висмута используются при воспалительных заболеваниях желудка и кишечника, язве желудка и двенадцатиперстной кишки, диарее различного генеза и т.д.
Азотнокислый висмут обычно получают выпариванием раствора висмута в азотной кислоте. В водном растворе эта соль легко гидролизуется при нагревании выделяет основной нитрат висмута (висмутил-нитрат) (BiO)NO3. Эта соль была известна еще в XVI в. и пользовалась большой популярностью у красавиц эпохи Возрождения. Ее применяли в качестве косметического средства, которое называли испанскими белилами.
Среди соединений висмута с галогенами наибольший интерес представляет, пожалуй, треххлористый висмут. Это – белое кристаллическое вещество, которое можно получить разнообразными способами, в частности обработкой металлического висмута царской водкой. BiCl3 имеет необычное свойство: на свету он интенсивно темнеет, но, если его поместить после этого в темноту, он снова обесцвечивается. В водном растворе BiCl3 гидролизируется с образованием хлорида висмутила BiOCl. Треххдористый висмут используют для получения водостойких висмутовых смол и невысыхающих масел.
В производстве лака для ногтей, губной помады, теней и др, оксохлорид применяется как блескообразователь.
Висмут в виде мелкой стружки или порошка применяется в качестве катализатора для производства тетрафторгидразина из трехфтористого азота, используемого в качестве мощнейшего окислителя ракетного горючего.
Керамики, включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др. являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 110 К.
Керамические фазы ВИМЕВОКС, включающие в свой состав оксид висмута с оксидами других металлов (ванадий, медь, никель, молибден и др.), обладают очень высокой проводимостью при температурах 500—700 К и применяются для производства высокотемпературных топливных элементов.
Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана вкупе со значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяют использовать висмут в гомогенных атомных реакторах.
При обычном давлении существует только одна ромбоэдрическая модификация висмута (параметры решетки с периодом а = 0,4746 нм и углом = 57,23°). При плавлении висмут уменьшается в объёме (как лёд), то есть твёрдый висмут легче жидкого. При высоких давлениях существуют другие модификации металлического висмута. Висмут хрупок, легко растирается в порошок. Висмут — самый сильный диамагнетик среди металлов.
В сухом воздухе висмут не окисляется, во влажной атмосфере постепенно покрывается пленкой оксидов. При нагревании выше 1000 °C сгорает с образованием основного оксида Bi2O3.
При окислении хлором суспензии Bi2O3 в среде водного раствора КОН при температуре около 100 °C образуется Bi2O5. Кроме того, известны оксиды висмута составов Bi2O, Bi6O7 и Bi8O11.
При сплавлении висмута и серы образуется сульфид состава Bi2S3, обладающий полупроводниковыми и термоэлектрическими свойствами. При сплавлении висмута с селеном или теллуром образуются, соответственно, селенид или теллурид висмута.
Известны галогениды висмута состава BiX3, пентафторид BiF5, а также оксигалогениды составов BiOX (X = Cl, Br, I).
При действии кислот на сплав висмута с магнием образуется висмутин BiH3 — очень неустойчивый ядовитый газ.
При взаимодействии висмута с металлами образуются висмутиды, например, висмутид натрия Na3Bi, висмутид магния Mg3Bi и др.
При понижении рН растворов солей висмута (III) в осадок выпадают различные гидроксосоли, например, Bi(OH)2NO3. Ранее считалось, что они содержат ион BiO+ (висмутил-ион), однако установлено, что такие гидроксосоли содержат октаэдрические катионы [Bi6(OH)12]6+, [Bi6O4(OH)4]6+ и [Bi6(OH)12]6+. Растворимые соли висмута ядовиты.
Уровень знаний сегодняшнего дня позволяет сделать вывод об отсутствии какой-либо физиологической роли висмута в организме человека. Содержание висмута в земной коре 2×10-5 % по массе, в морской воде — 2×10-5 мг/л.
В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90% всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.
Висмутовые руды, содержащие 1% и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, а также руд других металлов, являются висмут самородный (содержит 98,5—99% Bi), висмутин — Bi2S3 (81,30% Bi), тетрадимит — Bi2Te2S (56,3—59,3% Bi), козалит — Pb2Bi2S5 (42% Bi), бисмит — Bi2O3 (89,7% Bi), бисмутит — Bi2CO3(OH)4 (88,5—91,5% Bi), виттихенит Cu3BiS3, галеновисмутит PbBi2S4, айкинит CuPbBiS3.
Висмут в достаточной степени редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).
1. Глембоцкий В. А., Соколов Е. С, Соложенкин П. М. Висмут: Обогащение висмутсодержащих руд, Душ., 1972
2. Глинка Н. Л. Общая химия. – Л.: Химия, 1988. – 702 с.
3. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. – М.: Металлургия, 1991.
4. Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 379-380. — 623 с. — 100 000 экз.
5. Некрасов Б. В. Основы общей химии т.1. – М.: Химия, 1973.
6. Определение малых концентраций элементов. Под ред. Ю. Ю. Лурье. - М.: Наука, 1986.
7. Самсонов Г. В., Абдусалямова М. Н., Черногоренко В. Б. Металлургия висмута, А.-А., 1973
8. Федоров П.И. Висмутиды, К., 1977.
9. Химическая энциклопедия в 5 т. / под ред. И. Л. Кнунянца. – М.: Советская энциклопедия, 1990.
10. Химия и технология редких и рассеянных элементов. Ч. ІІІ. - М.: Высшая школа, 1976, - 320 с.
11. Химия: Справочное издание/ под ред. В. Шретер, К.-Х, Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. – М.: Химия, 1989.– 648 с.
12. Ягодин Г.А., Синегрибова О.А., Чекмарев А.М. Технология редких металлов в атомной технике. - М.: Атомиздат, 1974.
СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. ОБЩИЕ СВЕДЕНИЯ О ВИСМУТЕ 1.1 Происхождение висмута 1.2 Физические свойства 1.3 Химические свойства 1.4 Получение висмута 2. НАХОЖДЕНИЕ В ПРИРОДЕ 2.1 Содержание в земной коре 2.1.1 Висмутин 2
Расчет насадочной ректификационной колонны непрерывного действия по разделению смеси хлороформ-бензол
Аналіз процесу отримання ергостерину шляхом мікробіологічного синтезу
Губчатые изделия
Исследование морфологической структуры, физико-химических и химических характеристик беленой, сульфатной целлюлозы из древесины хвойной породы
Расчет ректификационной установки для разделения бинарной смеси этиловый спирт-вода
Синтез 9-ортогидроксиаминоакридина
Синтез сорбента нековалентно-модифицированного арсеназо I. Сорбционное извлечения Cu (II) из хлоридных растворов
Ультразвуковая экстракция полисахаридов льна
Дільниця функціонального покриття індієм
Изучение кето-енольной таутомерии на примере АУЭ
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.