. , , ,

,,,

, —

-


,

312.

..

.

-

2007


1.   

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3 -

2.

2.1

2.1.1

2.1.2 -

2.2

3.

3.1

3.2

3.3

3.4

4.


1.         ,

1.1     

 

. , - - , . , - .

, .

(1)

.

(1) :

(2)

- , :

(3)


(4)

(5)

, - , - .

, , , - .

, :

(6)

:

(7)

(6) (7) :

(8)

:

(9)

(6),(8) ( (7),(9)) . -- .

, . , , ( ) .

(6),(8) , - , :

(11)

(12)

,

(13)

(6),(8) , .

1.2     

 

:


(14)

(15)

- . , (14),(15). (14),(15), . (14), (15) ,

(16)

:

(17)

(18)

(17) (16) (14).

1.3     

 

. : (14),(15) ( , , ),

, (19)

, .

()

(20)

- , - (14),(15)

, , , .

, , (7) (20):

(21)

:

(22)


1.4     

 

, , .1.3. - , (17) ( ), (21) (22).

(21) , , . (14),(17) (15),(18).

, - . - ,

, (23)

, (24)

,

, ,- . -, . .

, , . - .

(., , [2,3]).

1.4.1

, (25)

- .

? . :

(26)

(27)

(28)

:


(29)

(30)

. - (23), :

(31)

,

(32)

.

. , (23),(24) :

(33)

(34)

(35)


- .

, , (25), . , , , , .

. , , . , . - (- , - ..) .

(, , , , , , -). , , , , .

1.4.2

, (23), (24)

, (36)

. .

(23), (24) :

,

,, (37)

- , , ,, .

.

, (38)

, (39)

- , - .

(38)

, (40)

:

(41)

, :

;

, , , (42)

, .

.

:

, (43)

, (44)

, , , ( (43)) .

:

, , (45)

, .

.

(43), (44) :

, (46)

, , (47)

( ) .

 

1.4.3 -

, - (., , [2,3]).


2.

 

2.1

 

2.1.1

. - , , -. , -, - , . [7].

:

1. . -:

(1)

, .

2. - , :

(2)

3. , ,

(3)

4. (1), (2), (3) , :

, , , (4)

, , , , -, - .

5. , .

1-5 :

,

,

,

, (5)

- . .


2.1.2 -

[8]. (5).

() (). ( ), , , ( ) :

1. , :

(6)

2. :

(7)

3. :

(8)

4. (6), (7) (8) :

, , , (9)

, , , , - .

5. ( ) (6), (7), (8), .

1-5 (5), .

- [1]. , (5) -.

, .

(5) , - . , , - , . - , . - (5), :

,

, (10)

.


2.2

 

. , [6].


3.

 

3.1

(5) .2 , - :

,

, (1)

,

,

, (2)

(17), (18) .1 :

,

,

,

,

,

,

,

,

,

,

,

, (3)

,, (4)

, (1), (2), (3), (4) , .

 

3.2

 

, (20) .1.3. ( ) ( ) .

, . . - , .

,

(5)

, .

, ,, -

, (6)


, .

, ,, -

(7)

, , ,.

:

, (8)

, (9)

, (10)

- .

:

, (11)

, (12)

(13)

, (14)

3.3

, . . , , , .

, , , . , , .

, -. .

, . .

, , .

.

(15)

, , (16)

, :

, , (17)

- , - .

,

, (18)

, (19)

- . - :

, (20)

, , - .

, 3 4, / - 2.

3.4

-, . [4].

. 3.1 :

1.        

, , , (21)

, , (22)

2.        

(1),(2) , , .

, , (23)

- , - . , - , - .

3.         :

(24)

.

:

(25)

1, 2.


4.

[5], , - .

, , , .

VARPRO , ( ) SDRIV1 .


1. . , . . ,1976.

2. . , . ͸, . , , I. . . ,1990.

3. . , . , , II. - . . ,1999.

4. L.K. Babadzanjanz, J.A. Boyle, D.R. Sarkissian, and J.Zhu, Parameter Identification for Oscillating Chemical Reactions Modelled by Systems of ODE, Journal of Computational Methods for Sciences and Engineering, 2002.

5. Bert W. Rust, ACMD, Robert W. Ashton, Chemical Science and Technology Laboratory, Parameter Identifications, 7/15/2001: http://math.nist.gov/mcsd/Reports/95/yearly/node28.html

6. R.Haberman, Mathematical Models. Mechanical Vibrations, Population Dynamics, and Traffic Flow. Classics in Applied Mathematics, 21, SIAM, Philadelphia, 1977.

7. A.J. Lotka, Undamped oscillations derived from the law of mass action, Jour. Amer. Chem. Soc. 42 (1920), 1595-1599.

8. A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.

- , 312. .. .

 

 

 

! , , , .
. , :