,,,
:
:
" Maple "
, 2008
:
, ;
.
1.
Maple , , , .
:
(_1, _2,, _n);
, _1, _2, , , . , , , , , .
Maple . , ( , ). , , simplify () , .
. ( ) , . , , . . , , value () . . (diff Diff), (int Int) .
1. .
> k:=Int (cos(x)^3, x);
> k=int (cos(x)^3, x);
> value(k);
Maple, . , . readlib () with (). , . , .
Maple, , , . , , , .. , .
2. : simplify ()
simplify () , , . , Maple , , , , .
. : simplify ().
, . simplify () , , . simplify () , Maple. , (, <F1>): `simplify/exp` , `simlif/ln` , `simplif/sqrt` , , `simplif/trig` , `simplif/radical` ( ), `simplif/power` , .. Maple , .
, , , . : simlif (, nl, n2,);
nl, n2 .. : Ei, GAM, RootOf, @, hypergeom, ln, polar, power, radical, sqrt, trig. ? simplify [], [] .
, , . assume=. : simplify (, ssum=); : complex , real , positive , integer , RealRange (a, b) (, b) .
simplify() :
2. .
> c:=ln (exp(x))+x*ln (exp(x));
> simplify(c);
> simplify (c, assume=real);
> d:=1/sqrt(8)*(((1+sqrt(8))/10)^5+((1‑sqrt(8))/10)^5);
> simplify(d);
2, ln (exp(x))+x·ln (exp(x)), . Maple (.. , ). .
3. .
> f:=(sqrt (x^2));
> simplify(f);
> simplify (f, assume=real);
> simplify (f, assume=positive);
simplify() . , :
{l, 2,}
- , , :
> k:=a+b^2+c^3+d+5;
> simplify (k, {c^3+d, a+b^2=1});
, c^3+d 0.
, , , . : . ( , , Maple, , .) , , , , . , , ..
4. .
> equ:={sin(x)^2+cos(x)^2=1};
e:=sin(x)^311*sin(x)^2*cos(x)+3*cos(x)^3‑sin(x)*cos(x)+2;
> simplify (e, equ, [sin(x), cos(x)]);
> simplify (e, equ, [cos(x), sin(x)]);
> simplify (e, equ, {sin(x), cos(x)});
> simplify (e, equ, {cos(x), sin(x)});
3. : expand ()
expand () , .. . . ( ) , .
: nd (, l, 2,, n); , , l, 2, n , .
5. .
> expand((x+3)*(x+4)^2);
> expand((x+3)^3/(x+4)^2);
> expand (cos(x-y));
> expand((x+3)*(x+4)^2, x+3);
> expand (x^((a+b)*(k+f)));
4. : factor ()
factor () . Maple , . , .. , , , :
> factor (x^3*y‑2*x^2*a*y+x*y*a^2‑x^3*b^2+2*x^2*b^2*a-x*b^2*a^2+x^2*y^22*x*y^2*a+y^2*a^2‑y*b^2*x^2+2*y*b^2*x*a-y*b^2*a^2);
: , . , . , . real, complex, / . 6 .
6. .
> factor (x^3+2); # ( )
> factor (x^3+2.0); #
( )
> factor (x^3+2, real); #
( real)
> factor (x^3+2, complex); #
( complex)
> factor (x^3+2,2^(1/3)); # 2^(1/3)
( )
factor () ( ), ( ), , ( ):
> d:=(x^11‑y^11)/(x^6‑y^6);
> factor(d);
5. : normal ()
normal () , , , , . : normal (f); normal (f, expanded); f , expanded , .
7. .
> f:=1/x+1/(x+1)^2+1/(x+1);
> normal(f);
f , , , , , , normal () f. , , , . , , , , , :
> s:=sin (x/(x+1) x)^2+cos (-x/(x+1)+x);
> normal(s);
> normal (1/x+y=x/y+(3*y)/x);
6. : combine ()
combine () , , , , . , , , expand (). , : sin (+b) = sin(a) cos(b) +cos() sin(b).
expand () , combine () :
> expand (sin(a+b));
> combine (sin(a)*cos(b)+cos(a)*sin(b));
:
> g:=sin (a+b)^2;
> s:=expand(g);
> f:=combine(s);
, combine () s g, expand (). , l , , ( ) combine (). , . g, subs (), , :
> subs (cos(2*a+2*b)=-2*sin (a+b)^2+1, f);
combine () . :
abs exp piecewise Psi Signum
arctan icombine polylog radical trig
conjugate ln power range
Maple , . , (arctan) (ln, radical), symbolic, combine () , .
7. : collect ()
collect () , , Maple. :
collect (, );
llt (, , form, func);
llt (, x, func);
, . - , .
collect () , , .. .
8. .
k:=x^3*sin(x)^2+x^3*cos(x)+x^3*exp(x)+x*cos(x)+2*x*exp(x)+7*x*sin(x)+4*x^3;
> collect (k, x);
> collect (k, x^3);
> collect (k, exp(x));
> collect (k, sin(x));
> collect (k, cos(x));
8 .
form . , , , . form : recursive distributed. , .. form , , , Maple . distributed , , .
9. .
> p:=x*y-a^2*x*y+y*x^2‑a*y*x^2+x+a*x; #
> collect (p, [x, y], recursive);
> collect (p, [y, x], recursive);
> collect (p, {x, y}, recursive);
> collect (p, {x, y}, distributed);
> collect (p, [x, y], distributed);
func , . simplify () factor ().
10. , .
> d:=a^4*y-y+a^4+a^2;
> collect (d, y);
> collect (d, y, factor); # y
8. : rationalize ()
. rationalize () . . , sin (), (), ln () .. , .
11. .
> a:=7*(3^(1/3)+4^(1/5))/(32^(1/3));
> rationalize(a);
> b:=y/(y+sqrt (2‑sqrt(5)));
> rationalize(b);
> c:=1/(3‑root (cos(1/(2+sqrt(mu))), 5));
> rationalize(c);
9. : assume ()
, , .. - . , , . l , . Maple, simplify(), sqrt(), , .
assume () Maple. :
assume (x, );
, , ( , Maple , ), . . 1.
1.
|
|
negative |
(-¥, 0) ( ) |
nonnegative |
(0,¥) ( ) |
positive |
(0,¥) ( ) |
natural | (, 0) |
posint |
0 |
odd |
|
even |
|
complex |
|
NumeralNonZero |
, 0 |
real |
|
rational | ( ) |
irrational |
|
integer |
|
fraction |
|
prime |
|
(, ) , , , . , (x, negative) <0, (, nonnegative) >=0 ..
- , , (~). :
¨ , , ( Options Þ Assumed Variables Þ No Annotation);
¨ , , , , ( Options Þ Assumed Variables Þ Phrase).
12. .
> assume (a>0);
> ln (a^2); #
> ln (a^2); #
> ln (a^2); #
Options Þ Assumed Variables Þ Trailing Tildes.
assume () (, ) . .
> ssum (>3, <5);
, (3,5).
, assume () , . :
> assume (x>3);
> assume (x<5);
, 5, , (3,5).
, additionally(), assume (). , additionally (), , assume () additionally ():
> assume (x>3); # >3
(- )
> dditinll (<=5); # , 3<<=5
( , ). , :
> x:='x';
, . 13.
13. .
> assume (b>0);
> d:=surd (b^4,4);
> b:='b':b;
> d;
, b , , b d. , subs () b 'b'.
14. .
> assume (b>0);
> d:=sqrt (b^4);
> d;
> d:=subs (b='b', d);
> b:='b';
> d;
is () , . true, . , is () false. is () FAIL, , . , .
15. .
> assume (a>0);
> is (a>0);
> is (a<1);
> additionally (a<1);
> is (a<1);
coulditbe () , . true, , f1s . FAIL is().
16. .
> assume (a>0);
> is (a>0);
> coulditbe (a=1);
> additionally (a<1);
> coulditbe (a=1);
about () :
> about(a);
Originally a, renamed a~:
is assumed to be: RealRange (Open(0), Open(1))
, Maple . , le - :
> int (exp(a*x), x=0..infinity);
Definite integration: Can't determine if the integral is convergent.
Need to know the sign of > a
Will now try indefinite integration and then take limits.
, a>0, Maple , , :
> assume (a>0);
> int (exp(a*x), x=0..infinity);
1. .., .. Maple. . .: , 1997. 208 .
2. .. Maple V. .: , 1998.
3. .. . .: . - , 1983. 176 .
4. .. Maple 6. . .: , 2001. 528 .
5. .. Maple V Power Edition .: - , 1998 .
: : " Maple "
Copyright (c) 2024 Stud-Baza.ru , , , .