. , , ,

,,,

,

:

2005


 

. 3

1. . 4

2. . 19

3. . 32

4. . 53

.. 66


. , . Matlab. , .

, , , , . .


1.       

, . 1.1.

. 1.1. : ; ; - ; ;

- Matlab (c Simulink). () , . ( ) , , . , .. . , (), , ( , , ó, b b2, ).

, . 1.1. .

1.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
c 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
b 0.1 0.2 0.25 0.25 0.3 0.35 0.4 0.5 0.5 0.6 0.8 1 1.2 1.3 1.5

b2

1.1 1.7 2.25 2.75 3.3 3.85 4.4 5 5.5 6.1 6.8 7.5 8.2 8.8 9.5

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. 1.1 , 10 - 20 .

, , :

, (1.1)

,


t ; ( ) ( ); .

, .

, , ..

,

,

N () .

:


, (1.2)

.

.

2 : - TN_prog.m TN_mod.mdl. : , m‑, , m‑, Simulink (Workspace), m‑. TN_prog.m .

:

.

clear all %

close all %

,

% TN_mod.mdl

%1 -

%2 -

%3 -

%4 -

%5 -

config = 5;

% nlin

switch config

case 1,

nlin = '. 2‑ . ';

case 2,

nlin = '- . .';

case 3,

nlin = '3‑ . .';

case 4,

nlin = '2‑ . .';

case 5,

nlin = '';

end

%,

c = 6;

b = 1;

b2 = 7;

%

t_end = 10; % ,

step = 1e‑3;% ,

%

N = 15; %

A = 10; %

lambda = 2*pi*N/t_end; %

ksi = 1.5/sqrt((pi*N)^2+2.25); %

%ksi = 0;

omega = (2*pi*N)/(t_end*sqrt (1‑ksi^2));%

gamma = ksi*omega; %

%

open_system ('TN_mod.mdl');

%

sim ('TN_mod');

% (. 1)

figure(1) %

title([' e(t) y(t). ', nlin, ', b=', num2str(b), ', b2=', num2str(b2),

', c=', num2str(c)]) %

xlabel ('t , c') %

ylabel ('e , g ') % Y

grid on %

hold on

plot (t, e, '-r') %

% , X Y,

%

plot (t, g, '-b') %

legend (' ', ' ', 4)% ,

%

% (. 2)

figure(2)

title(['- - g(e). ', nlin, ', b=', num2str(b), ', b2=', num2str(b2),

', c=', num2str(c)])

xlabel ('e ')

ylabel ('g ')

% X Y: [Xmin, Xmax, Ymin, Ymax]

if config == 5

axis ([-A*1.1 A*1.1 (A-b)*1.1 (A-b)*1.1])

else

axis ([-A*1.1 A*1.1 c*1.1 c*1.1])

end

grid on

hold on

plot (e, g, '-r')

Matlab, , .

- , , , , config, . m‑ , , , .

. , (. 1.2). Matlab, .

, -. Simulation parameters, Simulation\Simulation parameters , mdl‑ (. 1.3).

, m‑. .

. 1.2.

. 1.3.


Constant () Sources, Gain ( ) Math config ( Multiport Switch Nonlinear).

Fcn Functions & Tables (1.1). Fcn . 1.4.

. 1.4. Fcn

Fcn Clock Sources (. 1.5).

. 1.5. Clock

Nonlinear: Backlash (), Dead Zone ( ), Saturation ( ), Relay ( ).

Relay (. 1.6).

. 1.6.

Relay (. 1.7).

. 1.7. Relay


: Dead Zone, Gain Saturation (. 1.8, 1.9).

. 1.8.

. 1.9. , : Dead Zone; Saturation; - Gain

(. 1.10, 1.11).


. 1.10.

. 1.11. , : Relay1; Relay2

Backlash (. 1.12).

. 1.12. Backlash

, To Workspace ( Sinks), , . Simulink -.

To Workspace :

ü   (Save format) - Array ();

ü   (Variable name) - t;

ü   (Limit data points to last) - inf;

ü   (Simple time) - (-1);

ü   (Decimation) - 1 ( ).

. 1.13.

. 1.13. To Workspace,


- . TN_prog.m, config . (1.2). b2 , 0 b .

m‑ . - Simulink, ( , .. ). ; , .

, Edit\Copy Figure, - , MS Word.

23 (0<A<b, b<A<b2, A>b2 ; 0<A<b, A>b , , ). , 23 . , . .

. 1.4.1 1.4.4 .

: , , , .

             .

             :

          ( - );

          .

: , . , , .. , (b, b2, c) . .

. , , , , . .

.

4, , .

: , , , .

: config.

: ?

Simulink: .

Simulink: Nonlinear.

Simulink: Nonlinear. ?

2.       

( ) ( ).

. 2.1 : u ; e (); g ; x ; y ( ); (); k ; c, b ; .

. 2.1.

Matlab Simulink.


() , . 2.1. .


2.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
c 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
b 0.1 0.2 0.25 0.25 0.3 0.35 0.4 0.5 0.5 0.6 0.8 1 1.2 1.3 1.5
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

, . 2.1:

1)         + ;

2)         + ;

3)         + ;

4)         + ;

, .

(m‑) Simulink (mdl‑). , : , m‑, , m‑, Simulink (Workspace), m‑. m‑ (FP_prog.m) .

% ( FP_prog.m)

% : FP_mod.mdl.

% : , .

%

clear all

close all

% ,

% FP_mod.mdl

%1 - , k/p^2

%2 - , k/[(Tp+1) p]

%3 - , k/p^2

%4 , k/[(Tp+1) p]

config = 1;

% nlin lin

switch config

case 1,

nlin = '. 2‑ . '; lin = 'k/p^2';

case 2,

nlin = '. 2‑ . '; lin = 'k/[(Tp+1) p]';

case 3,

nlin = '2‑ . .'; lin = 'k/p^2';

case 4,

nlin = '2‑ . .'; lin = 'k/[(Tp+1) p]';

end

% , c

t_end = 20;

%

step_max = 0.005;

%

b = 0.1;

c = 1;

%

k = 1;

T = 0.4;

%

alfa = 0.0;

% :

% ,

% , .. Oxy;

% : [x0_min, x0_max];

% y: [y0_min, y0_max];

% dy

% dx

%

x0_min = -1.5;

y0_min = -1.5;

x0_max = 1.5;

y0_max = 1.5;

%

dx = 0.8;

dy = 0.9;

%

x0 = x0_min;

y0 = y0_min;

%

%'r' red, ;

%'g' green, ;

%'c' cyan, ;

%'m' magenta, ;

%'k' black, ;

%'y' yellow, ;

%'b' blue,

color = ['r';'g';'c';'m';'k'];%

%color = 'r'; %

%

figure(1)

xlabel('x')

ylabel('y')

title([' . ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ',

lin, ', k=', num2str(k), ', T=', num2str(T), '; alfa=', num2str(alfa)])

hold on

grid on

%

open_system ('FP_mod.mdl');

%

i=0;

% ;

%,

while x0 <= x0_max

i = i+1; %

if i == length(color)+1

i=1;

end

x0_ = x0; %

y0_ = y0; %

sim ('FP_mod'); %

gr1 = plot (x, y); %x y workspace

set (gr1, {'Color'}, {color(i)});

y0 = y0 + dy;

if y0 > y0_max

y0 = y0_min;

x0 = x0 + dx;

end

end

%  /

y1 = [-2.5; 2.5];

if (config == 1) | (config == 2)

x1 = alfa.*y1; % , . 2‑ .

gr2 = plot (x1, y1);

set (gr2, {'Color'}, {'b'});

else

x11 = alfa.* y1 + b; %

x12 = alfa.* y1 b; %, 2‑ . .

gr2 = plot (x11, y1);

set (gr2, {'Color'}, {'b'});

gr2 = plot (x12, y1);

set (gr2, {'Color'}, {'b'});

end

% ,

%

figure(2)

xlabel ('t, c')

ylabel ('x, y')

title(['x(t) y(t). ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ',

lin, ', k=', num2str(k), ', T=', num2str(T), '; alfa=', num2str(alfa),

'; x0=', num2str (x0_), '; y0=', num2str (y0_)])

hold on

grid on

gr3 = plot (time, x);

set (gr3, {'Color'}, {'r'});

gr4 = plot (time, y);

set (gr4, {'Color'}, {'b'});

legend ('x(t)', 'y(t)', 4);

Matlab, , .

m‑ , , , , , config, .

m‑ , x y. (t) y(t), . .

Simulink Simulink (Math, Nonlinear, Sinks Sources) Simulink Extras (Additional Linear), Simulink Library Browser. - FP_mod.mdl . 2.2.

Simulink - Simulink Extras\Additional Linear.

config, m‑.

, , -. Simulation parameters, Simulation\Simulation parameters , mdl‑ (. 2.3).

. 2.2.


. 2.3.

. 2.4 2.6. , m‑. .

. 2.4. To Workspace


. 2.5. :
;

. 2.6. : ; ; -


. x(t) y(t).

(a0.1 0.5) , . , .

a , . , .

, + , . 2.4.1 2.4.3.

, + . , , , (), (). x(t) y(t).

(a0.1 0.5) , . , , , : ) ; ) . .

a , . , . 2.4.6.

, + . , .

, , .

, , .

: ( , ; , ; ).

( , , x(t) y(t)).

( , , .). ( ).

4, , .


.

. () ?

. .

: , .

,  /  / .

.

(, ) ?

3.       

 

, . 3.1, Matlab Simulink. :

ݠ : (. 3.2, ), (. 3.2, ) (. 3.2, );

W () (); . 3.1 .

. 3.1.


ࠠ ᠠ

. 3.2. : , , -

3.1

1

2

3

4

, , , w, . , , .. , . (-1, j0), ..

,


:

.

: ; , , w, ; ; .

. 3.2 . 3.1 3.2 :

1)   ;

2)   .

, .

q(A) q1(A) .

W(jw), () , ( W(jw)) .


3.2

1 2 3 4 5 6 7 8

W()

W1

W2

W3

W4

W1

W2

W3

W4

1,

2

2,

3

1,

3

1,

3

2,

3

1,

3

1,

2

1,

3

k

6 5 3 4 15 2 10 8

T1

0.1 0.2 10 0.4 0.5 0.6 9 0.8

T2

0.2 0.4 5 0.8 1.0 1.2 6 1.6

T3

1 - 0.1 - 5 - 0.2 -

b

0.1 0.2 0.25 0.25 0.3 0.35 0.4 0.5

c

1 1.5 2 2.5 3 3.5 4 4.5

9 10 11 12 13 14 15 16

W()

W1

W2

W3

W4

W1

W2

W3

W4

1,

3

1,

2

1,

2

1,

3

1,

2

2,

3

1,

3

1,

3

k

15 10 9 6 7 8 5 7

T1

0.9 1.0 7 0.6 0.2 0.3 9 0.7

T2

1.8 2.0 5 1.2 0.3 0.5 4 1.5

T3

9 - 0.3 - 1.5 - 0.2 -

b

0.5 1.0 0.5 0.35 0.3 0.35 0.35 0.45

c

5 6 5.5 3 2 2.5 3 4

            

: . , , , .

( GB_prog.m) ( GB_mod.mdl R_Fourie.mdl).

c , GB_prog.m. GB_prog.m GB_mod.mdl, GB_prog.m R_Fourie.mdl.

C GB_prog.m:

%

% : GB_prog.m, GB_mod.mdl R_Fourie.mdl.

% : , .

%

clear all

%

set (0,'ShowHiddenHandles', 'on')

delete (get(0,'Children'))

% ,

% GB_mod.mdl

%1 -

%2 -

%3 -

config_nlin = 2;

% ,

% GB_mod.mdl

%1 W1 (p)=k/[(T1*p+1) (T2*p+1) (T3p+1)]

%2 W2 (p)=k/[(T1*p+1) (T2*p+1) p]

%3 W3 (p)=[k (T1*p+1)]/[(T2*p‑1)^2 (T3*p+1)^2]

%4 W4 (p)=[k (T1*p+1)]/[(T2*p‑1) p]

config_lin = 2;

k = 5;

T1 = 0.1;

T2 = 0.2;

T3 = 1;

b = 0.1;

c = 1;

% c

%

%

switch config_lin

case 1,

% , ( )

w = [0.02:0.01:100];

%

W_lin = k./ ((T1*j*w+1).* (T2*j*w+1).*(T3*j*w+1));

% lin

lin = 'W1 (p)';

case 2,

% , ( )

w = [2:0.01:100];

%

W_lin = k./ ((T1*j*w+1).* (T2*j*w+1).*(j*w));

% lin

lin = 'W2 (p)';

case 3,

% , ( )

w = [0.01:0.01:300];

%

W_lin = (k*(T1*j*w+1))./ ((T2*j*w‑1).^2.*(T3*j*w+1).^2);

% lin

lin = 'W3 (p)';

case 4,

% , ( )

w = [1:0.01:100];

%

W_lin = (k*(T1*j*w+1))./ ((T2*j*w‑1).*(j*w));

% lin

lin = 'W4 (p)';

end

% W_lin(jw)

SYSL = frd (W_lin, w);

%

%

switch config_nlin

case 1,

% ,

A = [b:0.01:3.0];

%

q = 2*c/(pi*b).* ((2*b./A).* sqrt (1 (b./A).^2));

q1 = -2*c/(pi*b).* 2*(b./A).^2;

% nlin

nlin = '2‑ . .';

case 2,

% ,

A = [b+0.0001:0.005:b*sqrt(2)];

A_ = [b*sqrt(2):0.005:3.0];

%

q = (4*c./ (pi*A)).* sqrt (1 (b./A).^2);

q1 = 0;

q_ = (4*c./ (pi*A_)).* sqrt (1 (b./A_).^2);

q1_ = 0;

% W_nlin(jA)

W_nlin_ = q_ + j*q1_;

% -1/W_nlin(jA)

S_ = -1./W_nlin_;

% -1/W_nlin(jA)

SYSN_ = frd (S_, A_);

% nlin

nlin = '3‑ . .';

case 3,

% ,

A = [b+0.001:0.01:100];

%

alfa = asin (12*b./A);

q = (1/pi)*(pi/2+alfa+0.5*sin (2*alfa));

q1 = (4*b).* (1‑b./A)./ (pi*A);

% nlin

nlin = '';

end

% W_nlin(jA)

W_nlin = q + j*q1;

% -1/W_nlin(jA)

S = -1./W_nlin;

% -1/W_nlin(jA)

SYSN = frd (S, A);

%

%

% W_lin(jw) -1/W_nlin(jA) plot ( )

figure(1)

gr_W_lin = plot (real(W_lin), imag (W_lin));

set (gr_W_lin, {'Color'}, {'r'});

hold on

gr_S = plot (real(S), imag(S));

set (gr_S, {'Color'}, {'b'});

title([' . . ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ',

lin, ', k=', num2str(k), ', T1=', num2str(T1), ', T2=', num2str(T2),

', T3=', num2str(T3)])

xlabel ('re(W lin), re(S)');

ylabel ('im(W lin), im(S)');

legend ('W lin(jw)', 'S(jA)', 0);

grid on

%

% W_lin(jw) -1/W_nlin(jA) LTI Viewer

if config_nlin == 2

ltiview({'nyquist'}, SYSL, '-b', SYSN, '-r')

ltiview({'nyquist'}, SYSL, '-b', SYSN_, '-r')

else

ltiview({'nyquist'}, SYSL, '-b', SYSN, '-r')

end

%

%

%c

%====================================================

%^^^^^^^^^^^^^^ ()^^^^^^^^^^^^^^^^^^^^^

%

%

t_end = 15;

%

step_max = 0.005;

%

y0 = 0.5;

%

open_system ('GB_mod.mdl');

%

sim ('GB_mod');

%

Max_Step_Size = get_param ('GB_mod', 'MaxStep');

Stop_Time = get_param ('GB_mod', 'StopTime');

% vec_period vec_amp

%(

% , )

clc %

period = vec_period (length(vec_period));

clear vec_period;

amp_kol = vec_amp (length(vec_amp))%

clear vec_amp;

% (

% )

frequency = 1/period;

w_kol = 2*pi*frequency %

%

figure(2)

gr = plot (t_and_y(:, 1), t_and_y(:, 2));

set (gr, {'Color'}, {'r'});

title([' y(t). ', nlin, ', b=', num2str(b), ', c=', num2str(c), '; ',

lin, ', k=', num2str(k), ', T1=', num2str(T1), ', T2=', num2str(T2),

', T3=', num2str(T3), ', y0=', num2str(y0)])

xlabel(['t, c ..=', num2str (amp_kol), ', W=', num2str (w_kol), 'c^-1']);

ylabel('y');

grid on

%

%

%close_system ('GB_mod', 1)

%=====================================================

%^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^

% ,

open_system ('R_Fourie.mdl');

% 'GB_mod.mdl' R_Fourie.mdl

set_param ('R_Fourie', 'MaxStep', Max_Step_Size);

set_param ('R_Fourie', 'StopTime', Stop_Time);

% ,

sim ('R_Fourie');

%

%close_system ('R_Fourie', 1)

% ,

% (

% , )

magn_0=vec_magn_0 (length(vec_magn_0));

clear vec_magn_0;

magn_1=vec_magn_1 (length(vec_magn_1));

clear vec_magn_1;

magn_2=vec_magn_2 (length(vec_magn_2));

clear vec_magn_2;

magn_3=vec_magn_3 (length(vec_magn_3));

clear vec_magn_3;

magn_4=vec_magn_4 (length(vec_magn_4));

clear vec_magn_4;

magn_5=vec_magn_5 (length(vec_magn_5));

clear vec_magn_5;

%

filtration = magn_1/magn_3

%

figure(3);

bar([0 1 2 3 4 5], [magn_0 magn_1 magn_2 magn_3 magn_4 magn_5]);

grid on

title(['. y(t). ', nlin, ', b=', num2str(b),

', c=', num2str(c), '; ', lin, ', k=', num2str(k), ', T1=', num2str(T1),

', T2=', num2str(T2), ', T3=', num2str(T3)])

xlabel([' : A1/A3=', num2str(filtration)]);

ylabel (' ');

Matlab, , .

m‑ , , .

m‑ ( ) ( ). W(jw) : plot ltiview. - W(-jw) , . , : zoom , , , , . ltiview.

(GB_mod.mdl). y(t) , ( ).

(R_Fourie.mdl), y(t), , . ,  / .

Simulink (GB_mod.mdl R_Fourie.mdl) Simulink (Math, Linear, Nonlinear, Signals & Systems, Sinks Sources), Simulink Extras (Additional Linear) Power System Blockset (Extra Library\Measurements), Simulink Library Browser (. 3.3 3.6). GB_mod.mdl, . 3.3, , config_lin config_nlin, m‑ GB_prog.m.

Simulation parameters, Simulation\Simulation parameters , mdl‑ (. 3.7, 3.8).

GB_mod.mdl R_Fourie.mdl . 3.9 3.15.

. 3.4.
( GB_mod.mdl)


. 3.5. ( GB_mod.mdl)

. 3.6. Simulink, ( R_Fourie.mdl)


. 3.7. GB_mod.mdl

. 3.8. R_Fourie.mdl

. 3.9. ( GB_mod.mdl): Relay1; Relay2


. 3.10. ( GB_mod.mdl): ;

. 3.11. ( GB_mod.mdl): ;

. 3.12. To Workspace ( GB_mod.mdl)


. 3.13. ( GB_mod.mdl): Saturation2; Memory1

. 3.14. Fourier ( R_Fourie.mdl)

. 3.15. From Workspace ( R_Fourie.mdl)


(m‑) : , .. ; .

m‑ . plot W(-jw) 1/W(jA). w, LTI Viewer.

, (..) ( y(0)< y(0)>). , m‑ .. y(t).

, , , R_Fourie.mdl, , .. , ; .

: k, . .

, config_nlin m‑, . 3.3.2 - 3.3.5.

, , .

, . 3.2.2 - 3.2.4.

( , , , ; y(t) ; ).

( ,  / , , ).

(  / , ).

4, , .

: , , . . -: . .


4.       

.

. , , . . , . . , , , .

:

ü  ;

ü  MATLAB ;

ü  ;

ü  () ;

ü  .


. 4.1 .

4.1

Wob(p)

Wob(p)

1

6

T1=0.2;

T2=0.1;

ξ = 0.1

2

T1=0.1

7

1=2;

T2=1;

T3=1

3

T1=2; ξ=0.1

8

T1=0.2;

ξ=0.1

4

T1=2;

T2=1

9

T1=2;

T2=1

5

T1=5

10

T1=2;

ξ=0.1

( SSOpt_d.m) SSLOpt_dSim.mdl ( ) SSLKOpt_dSim.mdl ( ).

SSOpt_d.m:

%

%

clc

close_system ('SSLOpt_dSim', 1); % mdl‑

close_system ('SSLKOpt_dSim', 1); % mdl‑

clear all

close all

set (0, 'ShowHiddenHandles', 'on')

delete (get(0,'Children'))

%

hMO = 0.01; % ,

T0 = 0.35; % ,

T_end = 8% 2.5; % ,

top_lim_u = 5000; %

low_lim_u = -5000; %

% p

p = zpk('p');

%

% ( )

%

T1 = 0.2; T2 = 0.1; T3 = 1; ksi = 0.1;

%

disp (' ')

Wn_1 = 1/p^2;

Wn_2 = 1/((T1*p+1)^2);

Wn_3 = 1/(T1^2*p^2+2*ksi*T1*p+1);

Wn_4 = (T1*p+1)/(p*(T2*p+1));

Wn_5 = 1/(p*(T1*p‑1));

Wn_6 = 1/(p*(T1*p+1)^3*(T2^2*p^2+2*ksi*T2*p+1));

Wn_7 = (T1*p+1)/(p*(T2*p‑1)*(T3*p+1));

Wn_8 = 1/(p*(T1^2*p^2+2*ksi*T1*p+1));

Wn_9 = 1/((T1^2*p^2+1)*(T2*p+1));

Wn_10 = 1/(p*(T1^2*p^22*ksi*T1*p+1));

%

Wn = Wn_10

%:

%

%( , )

disp (', ')

[zn_ob, pn_ob, kn_ob] = zpkdata (Wn, 'v')

disp (' R Q ')

[num_n_ob, den_n_ob] = tfdata (Wn, 'v')

disp (' ')

[An_ob, Bn_ob, Cn_ob, Dn_ob] = ssdata(Wn)

n_ob = size (An_ob);%n_ob(1) .

%:

%

sys_n_ob = ss(Wn); % .-.

sys_d_ob = c2d (sys_n_ob, T0); % . .-.

[Ad_ob, Bd_ob, Cd_ob, Dd_ob] = ssdata (sys_d_ob) %

%

ltiview ('step', sys_n_ob, 'r-', sys_d_ob, 'b-');

grid on

%:

%

disp (' ')

Pd = zeros (1, n_ob(1))% -

disp (' ')

Ld = acker (Ad_ob, Bd_ob, Pd)

%Ld = place (Ad_ob, Bd_ob, Pd)

%:

%

%

Ad_z = Ad_ob-Bd_ob*Ld;

% B, C, D

Bd_z = Bd_ob;

Cd_z = Cd_ob;

Dd_z = Dd_ob;

%:

%

sys_d_z = ss (Ad_z, Bd_z, Cd_z, Dd_z);% . . - .-.

disp (' ( )')

poles_sys_d_z = eig (sys_d_z)

%:

%^ - ,

%

%

[num_d_z, den_d_z] = tfdata (sys_d_z, 'v');

disp (' , ')

%,

Kv = 1/sum (num_d_z)

%:

% Simulink

%

% , , . SSLOpt_dSim.mdl ( State-Space) Cn_ob

% , Dn_ob - Dx -

%

Cx = eye (n_ob(1)); % ࠠ

Dx = zeros (n_ob(1), 1); % -

open_system ('SSLOpt_dSim.mdl'); % mdl‑

sim ('SSLOpt_dSim'); %

%:

disp (' ')

P_obs_d = zeros (1, n_ob(1))

%

Matlab, , .

Simulink (SSLOpt_dSim.mdl SSLKOpt_dSim.mdl) Simulink, Math, Linear, Discrete, Nonlinear, Function & Tables, Signals & Systems, Sinks Sources. . 4.1 4.8. Simulation parameters, Simulation\Simulation parameters , mdl‑ (. 4.9).



. 4.3.

. 4.4.

. 4.5.

. 4.6.


. 4.7.

. 4.8.

. 4.9.


(. . 4.1).

 

.

: , ( 0.4 c), ; .

. , .

, , . .

T0 . .

0. 0.

, , , ( , ). () . m‑ Simulink - . . .

, . , .

, , , .

.

, . 4.3.3.

, , . 4.3.4.

. 4.3.5 .

. 4.3.6 . T0.

. 4.3.7 , .

Matlab, .

.

?

.

?

, ?

A, B, C, D ?

?


1.       ..  / .. , .. . .: , 1975. 768 .

2.      / . .. . .: , 1986. . 2. 504 .

3.      / . .. . .: , 1972. . 2. 430 .

4.       ..  / .. . .: , 1988. 256 .

5.       ..  / .. . .: , 1977. 560 .

6.      . 5‑ ., . . / . .. . .: , 1978. 512 .

7.      . 2‑ ., . . / . .. . .: , 1979. 545 .

8.       ..  Matlab 5.3/6.x / .. . .: -, 2002. 736 .

9.       . Matlab: / . . .: , 2001. 560 .

10.     . Simulink 4. / . . .: , 2002. 528 .

: 2005

 

 

 

! , , , .
. , :