. , , ,

,,,

1- —

#1{ } n - p(x,y) n- Rn. { - R ''} xÎR'' R "xÎX $ e >0 U(x,e) . R'' R'' - ՠ - { -.} (x,r) - r -젠 1 r(x,y)=0 Û x=y1; 2) p(x,y)= p(y,x) " x,yÎX; 3) p(x,y)<= p(x,z)+p(z,y) " x,y,z ÎX r (,)- /

#2 - - , . - . {}- =f(u) u=j(x) .. - - f u {}- - : ** +**=1 - {} 2 - =f(t) =y(t) f:TX y:TY t=l(x) l:X T - f:XY f(x)=y(l(x)) - f - f(t) y(t) {} - f:ծY Y g:YX "yÎY g(y)=x Îՠ f(x)=y f f( -1)

#3 - f: NX - f(n) n- n c f:NX {Xn} n n=1,2,3 {Xn} =lim(n¥)xn "e>0 $ne =n(e)ÎN n>ne - /n-/0 $n1 n>n1 /xn-a/n1 e2=b-r>0 $ n2 n>n2 /xn-b/ xn>r n>n2 no=max(n1,n2)=> n>no xn>r xn a=b .{} . {} N . - , - , , , .

#4 {xn} lim(n¥)xn=0 {xn} . {xn} 1/{xn} - . {xn} => "e>0 $ne=n(e) n>ne /xn/>1/e => 1//xn/ne = lim(n¥) 1/xn=0 {T} {-} {xn}- {n}- => $M>0 /n/0 {xn}- =>$ne=n(e) n>ne /Xn/ n>ne /xnyn/=/xn/yn<(e/M)*M=e => lim(n¥)(xnyn)=0 {} $n0: "n>n0 aN£bN£cN $ Lim aN=a, $ Lim cN=c, a=c, $ Lim bN=b => a=b=c. {} >0, $ n: "n>n => cN<(a+E) & $ n: "n>n => (a-E)N. n>max{n0,n,n} (a-E)N£bN£cN<(a+E), .. " n>max{n0,n,n}=>bNÎ(a-E,a+E) { } Lim xN=x, Lim yN=y, $n0: "n>n0 N£yN, x£y {-} ( ): > => $ n0: "n>n0 |N-|0: "n>n0 |yN-y|max{n0, n0}: |N-|<|-|/2 & |N-|<|-|/2, .. 2 (-,+) & (-,+)], (-,+)Ç(-,+)=Æ. "n>max{n0, n0} NÎ(-,+) & NÎ(-,+) , > : "n>max{n0, n0} N>yN - .

#5 { -} f(x) . . - xa "E>0 $ d=d(E)>0 : "x 0<|x-a|xaf(x)=¥} "E{}>0 $ d=d(E)>0 | "x 0<|x-a|xaf(x)=¥ {O limxaf(x)=+¥} "E>0 $ d=d(E)>0 : "x 0<|x-a|E {O limxaf(x)=-¥} "E>0 $ d=d(E)>0 : "x 0<|x-a|x¥f(x)=A} "e>0 $ D=D(e)>0 : "x |x|>D |f(x)-A|x¥f(x)=¥} "E{}>0 $ D=D(E)>0 : "x |x|>D |f(x)|>E { } () - f(x) ghb xa+0(-0) / "e>0 $d=d(e)>0 "x a(-d)xa+0(-0)f(x){ } - f(x) limxa, . {} limxaf(x)=A limxaf(x)=B , U(A;e); U(B;e), e 1) $d=d(e)>0 | "x 0<|x-a|2=d2(e)>0 | "x 0<|x-a|2 Þ |f(x)-B|0=max(d1,d2), " . 0<|x-a|xaf(x)=A, e=1 $d>0 | "x 0<|x-a|xaf(x)=0 {o} - limxaf(x)=+(-)¥ {T} f(x) , 1/f(x) . f(x) 0 (.) a, 1/f(x) {} E>0 Þ $d=d(E) >0 | "x . 0<|x-a|1/E Þ 1/f(x)0 | "x, . 0<|x-a|0 $ d2>0 | 0<|x-a|E Þ 1/f(x) {T} . xa xa {} limxaf1(x)=0 limxaf2(x)=0 "e>0, $d1=d1(e)>0 | " 0<|x-a|0 | "x, 0<|x-a|xa(f1(x)+f2(x))=0 {T} xa - xa {} limxag(x)=0, - g(x) U(m,d1) .. $ m>0 | " ÎU(a,d1)Þ |g(x)|0 Þ $ d2>0 | "x, 0<|x-a|xaf(x)g(x)=0

#6 { - .} lim - f(x) =lim(a¥)f(x) Û f(x)=A+j(x) ;堠 j(x) - {-} =lim() f(x) ; j(x)=f(x)-A j(x)- . " e>0 $ d e d(e)>0  ", 0 /f(x)-A/ /j(x)/=/f(x)-A/0 $ d>0 " 0 /f(x)-A/=/j(x)/ lim()f(x)=A { - } f1(x) = lim()f2(x)=B 1) lim(f1(x)+f2(x))=A+B 2) lim(f1(x)*f2(x))=AB 3) lim(f1(x)/f2(x))=A/B ¹0 ; 1-e - lim()f1(x)=A lim()f2(x)=B => f1(x)=A+j1(x) f2(x)=B+j2(x) j1j2 - f1(x)+f2(x)=A+B+j1j2= A+B+j(x)== j() .. 2 ==lim()(f1(x)+f2(x))=A+B { } lim()f1(x)=b1 lim()f2(x)=b2 b1 f1(x) 1)e1=c-b1>0 $d1>0 "ÎU(a,d) /f1(x)-b1/ b1-c f1(x)0 "ÎU(a,d) =>/f2(x)-b2/ c-b2 "ÎU(a,d) => f1(x) f1(x)()f1(x)=b1 lim()f2(x)=b2 $ U(a,d) "ÎU(a,d) f1(x)<=f2(x)=> b1<=b2 {} b1>=b2 U(a,d) "ÎU(a1,d1) => f1(x)>f2(x) do =min(d1d2) =>"ÎU(a1,do) => f1(x)f2(x)- - => =>b1<=b2 {} limxaj(x) ; limxaf(x) limxaj(x)=A limxaY(x)=A - U(a,d) - j(x)£f(x)£Y(x) $limxaf(x)=A {-} "E>0 Þ $d2>0 | "x 0<|x-a|0 | "x, 0<|x-a|

#7{ -} $limxaf(x)=A $limyAg(y)=B U(a,d1) - g(f(x)) f(x)¹ $limxag(f(x))=limyAg(y) {-} "E>0 .. $ limyAg(y)=B Þ $s>0 |"y , 0<|y-A|xaf(x)=A Þ 1=d $ sxag(f(x))=B=limyAg(y)

#8{ -} f(x) O- - - g(x) - f(x) =O(g(x)) E , $ C>0 | |f(x)|£C(g(x)) "x Î E f(x)=O(1) E Þ f(x) .. $ >0 | |f(x)|£C "xÎE - f(x) g(x) (.) (.) f(x) o- g(x) xa f(x)=o(g(x)), xa , f(x)=E(x)g(x), limxfE(x)=0 x²=o(x), x0 f(x)=og(x) , xa E(x)=x h(x)=o(g(x)), xa; j(x)+h(x)=o(g(0))+o(g(x)=o(g(x)) xa f(x) O- g(x) xa, $ U(a) | f(x)=O(g(x)) U(a) f(x)=O(g(x)), xa - f(x) g(x) xa, - 0 (.) $ limxaf(x)/g(x)=1 f(x)~g(x) xa {} , - f(x) g(x) , f(x)=g(x)+o(g(x)) xa g(x)¹0 (x¹a) {-} f(x)~g(x) , xa g(x) 0 U(0) $ limxaf(x)/g(x)=1 Þ $ E(x), E(x)0 xa | f(x)/g(x)=1+E(x)Þ f(x)=g(x)+E(x)g(x)=g(x)+o(g(x)), xa. f(x)=g(X)+o(g(x)) xa , g(x)+o(x+a) f(x)=g(x)+E(x)g(x), limxaE(x)=0 Þ f(x)/g(x)=1+E(x) Þ limxaf(x)/g(x)=1 Þ f~g(x) xa { -} f(x) g(x) .. - xa g(x)¹0 U(a) {O} f(x)/g(x) xa 0 , - .. . f(x)/g(x)=0 f(x) .. g(x) xa {O} - f(x) .. - .. g(x) xa, - f(x) gk(x) .. xa

9{ - } - ()f(a)=f(a+h)-f(a) h=0 "e >0 $ d=d(e)>0 "h /h/xa+0f(x) (f(a-0)=limxa-0f(x)) f(a+0)=f(a) (f(a-0)=f(a)) { } - f(x) $ f(a+0), f(a-0) - . 1- - 1- .{ -} - f(x) f(a)¹0 :U(ag) >0 f(x)>c "xÎU(a,g) ((1)f(a)>0) f(x)< -c "xÎU(ag) f(a)<0 {-} e =/f(a)//2>0 $ d>0 "xÎU(ag) => /f(x)-f(a)/< e=/f(a)//2 f(x)0 => /f(a)/=f(a)=> "xÎU(ag) f(a)/2 c = f(a)/2; 2) f(a)<0 => /f(a)/=-f(a)=> "xÎU(ag) f(a)/2>f(x) => c = - f(a)/2 >0 => f(x)<-c 䠠

#10{- - } { -} - f(x) [a,b] . (.) (a,b) f(c)=0 {T2} - f(x) X([c,d],[c,d),(c,d],(c,d)) . a,b Î X , a0 Þ $ Î(a,b) | j(c)=0 Þ f(c)-C=0Þ f(c)=C {}- f(x) [a,b] .{} - f(x)- [a,b] $a.b Î[a,b] | f(a)=minf(x) xÎ[a,b]; f(b)=maxf(x) xÎ[a,b] f(a)<=f(x)<=f(b) "x Î[a,b]. { } - y=f(x) - ÎRn "e>0 $d=d(e)>0 | "x,xÎX,r(x,x)0 $d=e | "x,xÎR, |x-x|

#11 { - } - f(x) . , a - g(y) b =f(a) -=g(f(x)) {-} "e>0 - g() b d>0 " /-b/0 l() (-d;+d) "Î(-d;+d) => /f(x)-f(a)/ => g(f(x)) .

#12 { -} =f(x) "Î [a,b] "Î[A,B] , - x=j(y) {} y0Î[A,B] Þ x0=j(y0), f(x0)=y0 x0Î(a,b) ; e>0 , [x0-e,x0+e]Ì[a,b] y1=f(x0-e) y2=f(x0+e) - f "yÎ(y1,y2)Þx=j(y)Î(x0-e,x0+e) [A,B] [a,b] Þ e>0 (.) 0 (1,2) | "Î(1,2) j(y)Î(x0-e;x0+e) e +e Þ - j - . 0 . {} 0= Þ 0=j(y0)=b e

#13 { -} 1)f(x)=C . Df(x)=f(x+h)-f(x)=C-C=0; limh0Df(x)=0; 2) f(x)=x; Df(x)=x+h-x=h Þlimh0h=0; 3)f(x)=xn, nÎN , - Þ xn=xn-1×x; 4)f(x)=a0xn+a1xn-1++an- -; 5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1++an)/(b0xm+b1xm-1+..+bm)- , . 0 -.;6) f(x)=sinx "xÎR, |sinx|<=|x| .Ð(OB,ox)=Ðx; Ð(OB,ox)=Ðx 0<=x<=p/2 .. Þ |BB|<=BAB ; |BB|=2Rsinx; BAB{}=2Rx Þ 2Rsinx<=2rx; sinx<=x ; -p/2<=x<0 |sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=p/2 |x|>p/2 Þ |sinx|<=1

h0sinh/2=0 7.f(x)=cosx |Df(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2| |h|0; 8)f(x)=ax ,a>=0 Df=(ax+h-ax)=ax(ah-1) limh0ax(ah-1)=0; 9)f(x)=logax a>0 a¹1 (0,+¥) 10)arcsinx, arccosx . .

#14 { } {an} . 1+2+3n 12- å n 1- { } ån lim(n¥)an=0 - åan $ lim(n¥)Sn=S=lim(n¥)S(n-1) lim(n¥)an = lim(n¥)(Sn-S(n-1)) = lim(n¥)Sn-lim(n¥)(Sn-1)=0 . { } - å(n=1,¥)an ó "e >0 $ ne n>ne "Î Z p>=0 /n+an+1+an+2+an+p/1 a<1 ; na<=n a<=1 Þ 1/na+1/(n+1)a++1/(2n-1)a>=1/n+1/(n+1)++1/(2n-1)>1/2n+1/2n++1/2n=n/2n=1/2 Þ e=1/2 " n $ p=n-1 | - - |an++an+p|>e Þ . a>1, s=2-1>0 S2k=1+1/2a+(1/3a+1/4a)+(1/5a+1/6a+1/7a+1/8a)++(1/(2k-1+1)a+,,,+1/(2k)a); 1/(n+1)a+1/(n+2)a++1/(2n)a>1/na+1/na+1/na=n/na=1/na-1=1/ns<1+1/2a+1/2s/(1-1/2s) Þ {S2k} .. "n $k |n<2k Þ Sn2kÞ .

#15 {- } å+¥n=1an - - , . {} åk=m+1+¥ak- . n=a1++an n- å(1,+¥)an As=am+1++am+s s- åk=m+1+¥ak, As=Am+s-Am .. $limnaAnÞ $ limS+¥Am+SÞ $limS+¥AS=lims+¥Am+S-Am Þ åk=m+1+¥ak cx-c; åk=m+1+¥ak - ; Am+S=AS+Am; n=m+s Þ An=An-m+Am (n>m) .. $lims+¥ASÞ$limn+¥An=m Þ $limn+¥A=limn+¥An-n+Am Þ ån=1+¥an . {} å(1,+¥)an - an=å(k=n+1,+¥)ak Þlimn+¥an=0 {} An=å(1,n)ak, A=limn+¥An Þ A=An+anÞan=A-A1 Þ limn+¥an=A-limn+¥An=0 {} å(n=1,+¥)an å(n=1,+¥)bn - l-, å(n=1,+¥)(an+bn) - å(n=1,+¥)lan - {} n=å(k=1,n)ak, Bn=åk=1nbk; A=limn+¥An, B=limn+¥Bn; $limn+¥(An+Bn)=A+B, $limn+¥lAn=lA .. An+Bn=(a1+b1)++(an+bn)- n- å(n=1,+¥)(an+bn) lAn=la1++lan- n- .

#16{T } 2 å(n=1..¥)an å(n=1..¥)bn n>=0 bn>=0 (n=1,2,3) $ no n>no n $ M>0 Bn å(k=no+1..¥)ak - =>å(k=1..¥)ak { } lim(n¥) an/bn =k ; 1).0<=k<+¥ åbn åan; 2).0 e=1 $ no n>no an/bn an<(n+1)bn "n>no => åbn åan => åa 0<<=+¥ e=/2 (<+¥) e=1 =+¥ $ no n>no an/bn>k/2 (k<+¥) an/bn>1; k=+¥ => n>no n>(k/2)bn (k<+¥) => åbn =>ån =>åꠠ >bn (k=+¥) Þ .

#17{ ( )} åan an>0 n=1,2,3 (n+1)/an <=q<1 (n=1,2,3) => q>=1 {-} n= a1*a2/a1*a3/a2an/a(n-1)<=a1qq=a1qn-1 q<1 .. å(n=1,+¥)qn-1 c- => å(n=1,+¥)n c- (n+1)/an >=1 => (n+1)>=an>=>=a1>=0 lim(n¥)an¹0 => { } : $limn+¥an+1/an=k; 1)k<1 ; 2)k>1 . {-} k<1 e>0 |k+e<1Þ$ n0 | n>n0 an+1/ann=1+¥an -. k>1; k<+¥ e>0 | k-e>1 Þ $n0 | n>n0 an+1/an>k-e>1 Þ ån=1+¥an { } åan>0 n- (n)<=q<1 - n- (n)>1 {c} $ lim( n- (n))=k; k<1 >1

#18 {O} ån=1+¥(-1)n-1an, an>0{ } å(-1)n-1 n cn>0; 1)C(n+1)<=C(n) n=1,2,3; 2)Lim(n¥)(Cn)=0 {-} c S2k : S2k=(c1-c2)+(c3-c4)++(c(2k-1)-c(2k)) .. S2k=c1-(c2-c3)--(c(2n-2)-c(2n-1))-c2n$ lim(k¥)S2k+1=lim(k¥)S2k=S; $lim(n¥)Sn=lim(n¥)S2k = lim(k¥)S2k+1=S {- }

{ } 1-

#19 ån=1¥an å|an|. åan c å|an| - . { } {} ån=1+¥an - Þ ån=1+¥|n| -- Þ "e>0 $ne| n>ne "pÎZ p>=0 - -: |an+an+1++an+p|<=|an|++|an+p|n=1+¥an--.{- } {1} ån=1+¥an , . {2} ån=1+¥an ån=1+¥bn aibi = an bn { } ån=1+¥an . {1}|an-1|/|an| ; limn+¥|an-1|/|an|=k; k<1 ån=1+¥an- k<1 ån=1+¥an- k>1 ån=1+¥an- {2} - ånÖ|an|; k=limn+¥ nÖ|an|; k<1 ån=1+¥an- k>1 ån=1+¥an- .

#20{ } {} - zn=xn+iyn, n=1,2 z0=x0+y0 "e>0 $ ne | n>ne |zn-z0|n¥znÞ "e>0 $ne | n>ne =|zn-z0|n-z0|=Ö((xn-x0)²+(yn-y0)²)Þ |zn-z0|>=|xn-x0| |zn-zo|>= |yn-y0| Þ n>ne . - |xn-x0|<=|zn-z0|n¥Xn=x0 limn¥yn=y0 {} - . {Zn}. . . {} zn=xn+iyn s=s+ix . å(n=1,+¥)xn å(n=1,+¥)n s x - Sn=å(k=1,n)xk+iå(k=1,n)yk å(n=1,+¥)zn limn+¥zn=0 {} zn=xn+iyn Þ .. å(n=1,+¥)zn Þ å(n=1,+¥)xn å(n=1,+¥)n Þ limn+¥xn=limn+¥yn=0 Þlimn+¥zn=limn+¥xn+ilimn+¥yn=0 . {} zn zn zn |zn| . . {} .{} å(n=1,+¥)zn Þ å(n=1,+¥)|zn| - Þ .. |xn|<=Ö(x²n+yn²)=|zn|, |yn|<=|zn| (zn=xn+iyn) Þ å(n=1,+¥)|xn| -c å(n=1,+¥)|yn| - Þ å(n=1,+¥)xn å(n=1,+¥)n- Þ å(n=1,+¥)zn c {} (zn=xn+iyn) , xn yn {} å(n=1,+¥)|xn| å(n=1,+¥)|n| |zn=Ö(xn²+yn²)<= Ö(yn²+2|xn||yn|+yn²) <= Ö(|xn|+|yn|)²=|xn|+|yn| å(n=1,+¥)|zn| - c-.

#21{ } {O} f(x) . 0- - , 0; f'(x0)=limDx0(f(x0+Dx)-f(x0))/Dx {O} A=const D . - f . 0 dy df(x); D dx .. dy=Adx {} - f(x) (.) x0 - (.) 0 {-} Dy=f(x0+Dx)-f(x0) .. $ limDx0Dy/Dx=f(x0)Þ Dy/Dx=f(x0)+a(Dx), a(Dx) 0 D0 Þ Dy=f(x0)×Dx+a(Dx), a(D)0 D0 Þ Dy=f(x0)Dx+a(Dx)DxÞ limDx0Dy=0 Þ f(x)- .0 {O}y=f(x)- U(x0) .0 =0 D=f(x0+Dx)-f(x0), x0+DxÎU(x0) D=D+(D), D0{} , - y=f(x) , . {-} y=f(x) - 0 Þ Dy =f(x0+Dx)-f(x0)= ADx+o(Dx), Dx0; limDx0Dy/Dx= limDx0(A+o(Dx)/Dx)=A; .. . 0 $f(x0)=limDx0Dy/Dx=A {} - y=f(x) . 0 $f(x0)=limDx0Dy/DxÞDy/Dx=f(x0)+e(Dx), limDx0e(Dx)=0 Þ Dy=f(x0)Dx +e(Dx)DxÞ Dy=f(x0)Dx+o(Dx), Dx0 Þ - f- . 0

22 { } - y=f(x)- (a;b) x0, x0+DxÎ(a,b), y0=f(x0), y0+Dy=f(x0+Dx) M0(x0,y0) M(x0+Dx,y0+Dy){} MM0 - y=y0+k(Dx)(x-x0), k(Dx)=Dy/Dx; y=f(x) .(0) D0 D0 Þ|M0M|=Ö(Dx²+Dy²)0 D0 MM0 {} $ limDx0k(Dx)=k0 y=y0+k(Dx)(x-x0) - k(Dx)=Dy/Dx D0 - =f(x) (.) (0,0) .. k(Dx)=Dy/Dx, k0=limDx0k(Dx)= limDx0Dy/Dx=f(x0) Þ y=y0+f(x0)(x-x0) ; f(x0)=tga; y=y0+k0(x-x0) ; y=y0+k(Dx)(x-x0) Þ M0M .. f(x0)(x-x0)=dy dy=y-y0 - . .. - (.) 0 .{ .} - y=f(x) (.) (0,0) -. , , k=-1/f(x0) ; y-f(x0)=-1×(x-x0)/f(x0) x y

#23 - U(x) V(x) (.) d(U+(-)V)=(U+(-)V)dx=(U+(-)V)dx=Udx+(-)Vdx=dU+(-)dV; 2)d(U×V)=(U×V)dx=(UV+VU)dx=UXdx+VUdx=Vdu+Udv; 3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V²=(U'Vdx-VUdx)/V²=(Vdu-Udv)/V²

24 { -.} Dh: : z=f(y) - . y0 ; y=j(x)  . 0 .   y0=j(x0) - z=f(j(x))- . 0 : zx=zy×yx=f(y)×j(x) ; dz/dx=dz/dy × dy/dx {}.. z=f(y) - . y0 ÞDz=f(y0)Dy+a(Dy); .. y=j(x)- . 0 ÞDy=j(x0)Dx+b(Dx); Dz=f(y0)j(x0)Dx+f(y0)b(Dx)+a(Dy); . y=j(x) - . 0 Þ (Dx0ÞDy0). t(Dx)=f(x0)b(Dx)+a(Dy); limDx0t×Dt/Dx; limDx0t(Dx)/Dx= limDx0[f(x0)×b(Dx)/Dx+a(Dy)/Dx]= limDx0a(Dy)/Dx= limDx0a(Dy)/Dy× limDx0Dy/Dx=j(x0); D(f(j(x)))=(f(y0)j(x0))Dx+t(Dx), limDx0t(Dx)/Dx=0Þ (f(j(x)))x=zx=f(y0)j(x0)

#25 { -.} y=f(x) 0 : 1) f(x)¹0, 2) , 0, - y=f-1(x)=j(y) 3) y0=f(x0); (.) 0 f(j)¹0, j'(y0)=1/f(x0). {-} x=j(y) . x¹x0y¹y0ÞDx¹0 Dy¹0Þ Dy/Dx=1/Dy/Dx ; y=f(x) . x0 limDx0Dy=0ÞDx0ÞDy0 $f(x0)=limDx0Dy/Dx= limDy01/Dy/Dx=1/limDy0Dx/Dy=1/j(y0) ; f(x0)¹0Þj(y0)=1/f(x0)

#26 { } y=[u(x)]v(x),u(x)>0; lny=v(x)lnu(x); y'/y=v(x)lnu(x)+v(x)×u(x)/u(x); y=uv×(vlnu+v×u/u); (lny)=y/y- - { -} 1) y=Const Dy=c-c=0ÞlimDx0Dy/DxÞ(C)=0 ; 2) y=sinx Dy=cosx 3)(cosx)=-sinx 4) (ax)=axlna 5)(arcsinx)=1/Ö1-x² 6)(arccosx)=-1/Ö(1-x²) 7) (arctgx)=1/(1+x²) 8) (arcctgx)=-1/(1+x²) 9) (lnx)=1/x ; 10) (xa)=a×xa-1

#27 { . }{} y=f(x); f(n)(x)=(f(n-1)(x)) .. - y=f(x) (.) n- , (.) 0 n-1 , (.) 0 f(n-1)(x0) . n- - f {} n- } {} dnf(x)=d(dn-1f(x)) , dx d²y=d(dy)=d(f(x)dx)=df(x)dx=f(x)dx²; dny=f(n)(x)dxn ;f(n)=dny/dxn ) uv(n) = u(n)v + Cn1 u(n-1)v' +Cn2 u(n-2)v'' + +C1n u(n-k)v(k) + uv(n) k=0nCkn u(n-k)v(k),( ), Cnk =n!/k!×(n-k)! , 0! = 1, v(0) = v. (u + v)(n) = åk=0nCkn u(n-k)v(k) - . .

#28 { } x=x(t), y=y(t) t0 t=t(x) x0=x(t0) - ()=(t(x)) . x(t) g(t) . 0 - ()=(t(x)) (.) 0 Ԓ(x)=yt(t0)/xt(t0) - Ԓ(x0)=yt(t0)×tx(x0); tx(x0)=1/xt(t0) ((0)=yt(t0)/xt(t0) x(t0)¹0 - x(t) g(t) x(t0) y(t0) Ԓ(x0) =(Ԓ(x))x|x=0=(yt/x) x|x=x0=(yt/xt|t|t=t0×tx|x=x0=ytt(t0)×xt(t0)-yt(t0)×xtt(t0)/(xt(t0))

#29 (). f(x) () , f()=0. . , f(x) . f(c)=limDx0(f(c+Dx)-f(c))/Dx ; f(c)>=f (x) "xÎU(), Dx> 0 ;(f(c+Dx)-f(c))/Dx Dx0 , f()<=0. Dx<0, (f(c+Dx)-f(c))/Dx>=0 , Dx0 , , f()>=0. , f'(c)=0.

#30 (). y=f(x) [, b], (, b) f () ==f(b), cÎ0(,b), , f'(c)=0. . f [, b], cÎ(a, b) f'(c)=0.

, f [, b]. f [, b], x1Î [, b], f [, b] 2Î[, b], f [, b]. [,b], maxf(x)=minf(x)=f(a) =f(b) f [, b]. , x1,2 (, b). c. . , f'(c) , f'(x) Î(, b). f(c)=0.{} . , y=f(x) (c,f(c)) .

#31 (). f(x) [, b] (,b). (, b) , (f(b)-f(a))/(b-a)=f'(c) (<(c)-(f(b)-f(a))/(b-a)=0

ࠠ , (f(b)-f(a))/(b-a)=f(c) (a

#32(). f(x) g(x) [, b] (, b), g'(x)¹0 (, b), cÎ(a, b) , ( f(b)-f(a))/(g(b)-g(a))=f(c)/g(c)

. , g(b)-g(a)¹0, , g , g'(c)=0, . F(x)=f(x)-f(a)-(f(b)-f(a))×(g(x)-g(a))/(g(b)-g(a)) F [, b], (, b) F(a)=0, F(b)=0. , , cÎ(a, b), F'(c)=0 F(x)=f(x)-(f(b)-f(a))×g(x)/(g(b)-g(a)) , c, .

#33( ) 1)- f(x) g(x) (a,b] ;2) limxa+0f(x)=limxa+0g(x)=0; 3) () f(x) and g(x) (a,b] y¹0 ; 4) ( ) limxa+0f(x)/g(x)=k limxa+0f(x)/g(x)=k {-} - f(x) g(x) x=a f(0)=g(0)=0 ; [a;b] - (.. .a f g , ) . f(x)/g(x)=(f(x)-f(a))/(g(x)-g(a)=f(c)/g(c); axa+0f(x)/g(x)= limxa+0f(x)/g(x)=k {}{T2} 1)f,g [c;+¥) c>0 ; 2) limx+¥f(x)=limxa+¥g(x)=0; 3)() f(x) and g(x) [c,+¥) g(x)¹0 ;4)$ limxa+¥f(x)/g(x)=k limxa+¥f(x)/g(x)=k {} t=1/x, x+¥Þt0 2) limt0f(1/x)= limt0g(1/x)=0 ; 4) limt0f(1/t)/g(1/t)=k Þ 1 limxa+¥f(x)/g(x)= limxa+¥f(x)/g(x)=k {}{T3}1)- f(x) g(x) (a,b] ;2) limxa+0f(x)=+¥; limxa+0g(x)=+¥; 3) () f(x) and g(x) (a,b] y¹0 ; 4) ( ) limxa+0f(x)/g(x)=k limxa+0f(x)/g(x)=k

#34 - {} - y=f(x) (a,b) .Î(a,b) n f(x),f(x),,f(n)(x); f(x)=f(x0)+f(x0)(x-x0)/1!+ f(x0)(x-x0)²/2!++ f(n)(x0)(x-x0)(n)/n!+o((x-x0)n)- . f(x)=f(x0)+f(x0)(x-x0)/1!+ f(x0)(x-x0)²/2!++ f(n)(x0)(x-x0)(n)/n!+f(n+1)(c)(x-x0)n+1/(n+1)!- . Pn(x)=f(x0)+f(x0)(x-x0)/1!++f(n)(x0)(x-x0)n/n!-- n, - rn(x)=f(x)-Pn(x)- - ; =0 - . {} Pn(x)=A0+A,(x-x0)n ;Pn(x0)=f(x0), Pn(x0)=f(x0),,Pn(n)(x0)=f(n)(x0) (1) Pn(x)=A0+a1(x-x0)++An(x-x0)n;Pn(x0)=f(x0),Pn(x0)=f(x0),,Pn(n)(xn)=f(n)(x0); Pn(x)=A1+2A2(x-x0)++nAn(x-x0)n-1 ; Pn(x)=2×A2+3×2×A3(x-x0)+.+n(n-1)An(x-x0)n-2 ;Pn(n)=n×(n-1)×(n-2)××An; P(x0)=A0=f(x0); Pn(x)=f(x0)+f(x0)(x-x0)/1!+fn(x0)(x-x0)²/2!++f(n)(x0)(x-x0)n/n!; Pn(x0)=f(x0), Pn(x0)-f(x0),,Pn(n)(x0)=f(n)(x0) ; rn(x)=f(x)-Pn(x) .. rn(n-1)(x) - (×) x0 limxx0rn(n-1)(x)/(x-x0)= limxx0 (rn(n-1)(x))-rnn-1(x0)/(x-x0)=rnn(x0) limxx0rn(x)/(x-x0)n= limxx0rn(x)/n(x-x0)n-1== limxx0rn(n-1)(x)/n!(x-x0)=rn(n)(x)/n!=0 Þrn(x)=o((x-x0)n),xx0

#35 - . 1)f(x)=ex, f(0)=1, f(k)(x)=ex, f(k)(0)=1, ex=1+x+x²/2!++xn/n!+o(xn), x0; 2)f(x)=sinx, f(0)=0, f(x)=cosx, f(x)=-sinx, f(x)=-cosx, f(IV)(x)=sinx,; f(k)(x)={(-1)msinx, k=2m {(-1)m-1cosx, k=2m-1 m=1,2,; f(2m-1)(0)=(-1)m-1 n=2m sinx=x-x3/3!+x5/5!-+(-1)n-1x2m-1/(2m-1)!+o(x)2m,x0; cosx=1-x²/2!+x4/2!-x6/6!+.+(-1)mx2m/(2m)!+o(x2m+1),x0; 4)f(x)=ln(1+x)f(0)=ln1=0, f(x)=1/(1+x), f(x)=-1/(1+x)², f(x)=2/(1+x)3,f(k)(x)=(-1)k-1(k-1)/(1+x)k ;f(k)(0)=(-1)k-1×(k-1)! Þ l(1+x)=x-x²/2+x3/3+..+(-1)n-1xn/n+o(xn),x0 ; 5)f(x)=(1+x)b f(0)=1, f(x)=b(1+x)b-1, f(x)=b(b-1)(1+x)b-2; f(k)(x)=b(b-1)(b-k+1)(1+x)b-k ;f(k)(0)=b(b-1)(b-k+1); (1+x)b=1+b×x+b(b-1)x²/2!++b(b-1)(b-n+1)xn/n!+o(xn), x0

#36 -. {} - f(x) (a,b), , - () f(x)>=0 (f(x)<=0) f(x)>0 (f(x)<0), - () (a;b) {} f- () x0Î(a,b), Dx>0, f(x0+Dx)-f(x0)>=0; Dx0; (Dy<=0) Þ Dy/Dx>=0 (Dy/Dx<=0) Þ f(x0)=limDx0Dy/Dx>=0 (f(x0)<=0); {} " xÎ(a,b) f(x)>=0 (f(x)<=0) a0, f(c)>=0 (f(c)<=0)Þ f(x2)-f(x1)>=0 (f(x2)-f(x1)<=0)Þ f(x2)>=f(x1) (f(x2)<=f(x1)) Þ - () f(x)>0 xÎ(a,b) (f(x)<0,xÎ(a,b))Þf(c)>0 (f(c)<0)Þf(x2)-f(x1)>0 (f(x2)-f(x1)<0)

#37{} (×) x0 - f(x), =0 . {} .. (.) x0 Þ $ U(x0,d) | " xÎU(x0,d) f(x)>=f(x0) f(x)<=f(x0) .. (.) x0 - y=f(x) .U(x0,d)Þ =0 {} : - y=f(x) (.) x0 0 . 0 - (.. $ d>=0 | " xÎ(x0,x0+d] f(x)<0 (or f(x)>0), " xÎ(x0-d,x0] f(x)<0 (or f(x)>0) 0 xÎ(d,x0+d); f(x)>0,a xÎ(x0-d,x0) f(x)<0 x0 , xÎ(x0-d,x0) f(x)<0, xÎ(x0,x0+d) f(x)>0 xo-. {} xÎ(x0-d,x0) f(x)>0 xÎ(x0,x0+d) f(x)<0. Df=f(x)-f(x0)=f(x)(x-x0) x 0 >x0 Þ x-x0>0 x00ÞDf>0 Þ f(x)

#38 y=f(x) - () "x1,x2 ÎX - f(q1x1+q2x2)<=q1f(x1)+q2f(x2) (f(q1x1+q2x2)>=q1f(x1)+q2f(x2)), " q1>0,q2>0, q1+q2=1 : x=q1x1+q2x2 (x10,q2>0, q1+q2=1 . 1 2{-} (x-x1=q1x1+q2x2-x2=x1(q1-1)+q2x2=-x1q2+q2x2=q2(x2-x1)>0Þx>x1Þx2-x=x2-q1x1-q2x2=x(1-q2)-q1x1=x2q1-q1x1=q2(x2-x1)>0Þx1=)(f(x2)-f(x))/x2-x1) (1) {1} f(x) . . . . . . () Û f(x)- () {-} - 1<<2 - (1) - 1 2 f(x1)<=(f(x2)-f(x1))/(x2-x1) xx1 (f(x2)-f(x1))/(x2-x1)<=f(x2) xx1 Þf(x)<=f(x2)Þ {} . . (f(x2)-f(x1))/(x2-x1)=f(x) .. (f(x1)<=f(x2) Þ - 1 Þ - . {} - y=f(x) () , - ( ) X , - f(x)>=0 (f(x)<=0) {} f-() Û f () Û f<=0 (f>=0) {(.) } y=f(x) (.) x0 y=e(x)-- - =f(x) (.) 0. (.) 0 f(x)-e(x)- (.) 0 . {T} . 0 - f(x) , 0 {} - y=f(x) . 0 L(x)=f(x0)+f(x0)(x-x0) - f(x) . . 0 : f(x)=f(x0)+f(x0)(x-0)+f(x0)(x-x0)²/2!+a(x)(x-x0)², a(x)0 xx0 ; f(x)-L(x)=(f(x0)+2a(x))(x-x0)²/2! ; f(x)¹0 .. a()0 0 . . 0 f(x) Þ . 0 f(x)-L(x) , . 0 , Þ f(x0)=0 {} (.) : - y=f(x) (.) 0 U(x0,d) (.) 0 f , .{-} f(x)-L(x)=f(x)-f(x0)-f(x0)(x-x0)=( ; x 0) =f(x)(x-x0)-f(x0)(x-x0)=( h / x 0)=(x-x0)(f(x)-f(x0))=(x-x0)(x-x0)f(h); .. - x 0 - x . 0 Þ(-0)(x-0)>0 f(x)-L(x) f(h); .. . h x 0 - h . 0 Þ . 0 f(x)-L(x)- Þ 0-. .

#39 : - y=f(x) >A=const - f(x) x>A. L: - : y=ax+b. (x,f(x)) L 0 , +¥ -¥{} L r(x)=|f(x)-ax-b|/Ö(1+a²) .. L limx+¥r(x)=0Þ limx+¥(f(x)-ax-b)=0Þ limx+¥(f(x)/x-a-b/x)=0Þ limx+¥(f(x)/x-a)=0Þ a= limx+¥f(x)/x ; b= limx+¥(f(x)-ax). limx+¥f(x)/x lim +¥ . = b y=ax+b . {} - y=f(x) . 0 - limx0-0f(x)=¥ limx0+0f(x)=¥ =0 .

#40 {O} - F(x) - f(x) - F(x)=f(x) {T} - F(x) j(x) - f(x) const {-} F(x) f(x) F(x)=f(x) Þ(F(x)+c)=F(x)=f(x)ÞF(x)+c- f(x) F(x) j(x) f(x) - y()=F(x)-j(x) y(x)=F(x)-j(x)=f(x)-f(x)=0 1,x2ÎX Þ y(2)-y(1)=y(c)(x2-x1)=0 . y(x2)=y(x1) Þy(x)=c=const {T} F1(x) F2(x)- f(x) (a,b), F1(x)-F2(x)=C (a,b), C- .

#41 {O} - f(x) - - f(x) òf(x)dx ; F(x)- f(x) òf(x)dx=F(x)+C; {C-} 1) - F(x) , òF(x)dx=F(x)+C; 2) - f(x) d(òf(x)dx)=f(x)dx; 3) f1 and f2 - f1+f2 ò(f1(x)+f2(x))dx=òf1(x)dx+òf2(x)dx {} F1(x)- f1(x), F2(x)- f2(x), F1(x)+f2(x)- f1(x)+f2(x), .. (F1(x)+F2(x))=F1(x)+F2(x)= f1(x)+f2(x); 5) F(x) f(x), òf(ax+b)dx=1/aF(ax+b)+C {} [1/aF(ax+b)]=1/a×aF(ax+b)=f(ax+b);

#42 ò: f(x) =j(t) - t, òf(x)dx=òf(j(t))j(t)dt+C=òf(j(t))d(j(t))+C-- . { } - U(x),V(x) òU(x)V(x)dx òV(x)×U(x)dx=U(x)×V(x)-òU(x)×V(x)dx - . {-} .. - U(x) V(x) (U×V)=UV+UVÞUV=(UV)-UV; .. òUVdx $ ò(UV)dx=UV+C $òUVdx=ò(UV)dx-òUVdx=UV-òUVdx+C Þ òUVdx=UV-òUVdx; òexsinxdx=exsinx-òexcosxdx=|U(x)=ex V(x)=sinx|=exsinx-(excosx-òexsinxdx); òexsinxdx=exsinx-excox-òexsinxdx; 2òexsinxdx=exsinx-excosxÞ òexsinxdx=(exsinx-excosx)/2

#43 n n Pn(z)=A1(z-z1)k1××(z-zs)ks, k1++ks=n; - - Pn(z)ÞPn(z)=(z-a)m×Qn-m(z)Þ a- - m Pn(z); Pn(x)- , Pn(x)ºPn(x) xÎR : Pn(x) . .. (z-a)(z-a) Þ Pn(x)=(x-a1)a1××(x-ar)ar×(x-z1)b1××(x-zs)bs×(x-zs)bs=(x-a1)a1××(x-ar)ar×(x²+p1x+q1)b1××(x²+psx+qs)bs; Pj²/4-qj<0, j=1,,s; a1,,arÎR, Pj,qjÎR {} Px Qx , degP(x)m×Q1(x), Q1(a)¹0 P1(x) ,AÎR , P(x)/Q(x)=A/(x-a)m+P1(x)/(x-a)m-1×Q1(x) {} P(x) Q(x) , degP(x)m×Q1(x), Q1(z1)¹0, p²/4-q<0; M NÎR . . P1(x) P(x)/Q(x)=(Mx+N)/(x²+px+q)m+P1(x)/(x2+px+q)m-1Q1(x); M N : P(x)/Q(x)=(Mx+N)/x²+px+q)m+P(x)/Q(x)-(Mx+N)/(x²+px+q)m=(Mx+N)/(x²+px+q)m+(P(x)-(Mx+N)Q1(x))/(x²+px+q)mQ1(x) {T} P(x) and Q(x) degP(x)a1××(x-ar)ar×(x²+p1x+q)×(x²+psx+qs)ps, a1,,arÎR,p1q1..psqsÎR, P²j/4-qj<0, j=1,,s ; Ai(j), I=1,..,r; j=1,,aI Mi(j),Ni(j), I=1,,s ; j=1,,bI; P(x)/Q(x)=A1(1)/(x-a1)a1+..+A1(a1)/(x-a1)++A2(1)/(x-a2)a2++A2(a2)/(x-a2)a2+(M1(1)x+N1(1))/(x²+p1x+q1)b1++(M1(b1)x+N1(b1))/(x²+p1x+q1)++(Ms(1)x+Ns(1))/(x²+ps+qs)bs++(Ms(b)x+Ns(bs))/(x²+psx+qs). ; {} ò 1.òAdx/(x-a)=Aln|x-a|+C ; 2.òAdx/(x-a)m=Aò(x-a)-mdx=A/(1-m)(x-a)m-1+C 3.ò(Mx+N)dx/(x²+px+q)=(M/2)ln(x²+px+q)+(N-MP/2)(1/a)arctg(x+P/2)/a+C 4.ò(Mx+N)dx/(x²+px+q)m=M/2(1-m)(x²+px+q)m-1+(N-MP/2)òdt/(t²+a²)m

#44 - R(x,mÖ(ax+b)/(cx+d) . t=mÖ(ax+b)/(cx+d) . tm=(ax+b)/(cx+d); x=(b-dtm)/(ctm-a) - t; dx=(mtm-1(ad-bc)dt)/(ctm-a)² Þ òR(x,mÖ(ax+b)/(cx+d))dx=òR((b-dtm)/(ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)²=òR1(t)dt. R1(t)-.{} òR(x,Öax²+bx+c)dx, - , b, c . ax²+bx+c 1 2 ax²+bx+c=a(x-x1)(x-x2) R(x,Öax²+bx+c)=R(x,(x-x1)Ö(x-x2)a/(x-x1)=R1(x,Ö(x-x2)/(x-x1) ; ax²+bx+c >0. () t=Ö(ax²+bx+c) +xÖa Þax²+bx+c=t²-2xtÖa+ax²; x=(t²-c)/2t(Öa)+b - t .. ; <0 >0 (ax²+bx+c)>=0) Öax²+bx+c=xt+Öc {}{}

#45 R(cosx,sinx); òR(cosx,sinx)dx t=tg(x/2) (-p

#46 {O} t[a,b] - xi, I=0,1,,it x0=at(f,x1,,xit)=åI=1ixf(xI)Dx; - {} I ò - y=f(x) [a;b] aòbf(x)dx " E >0 $dE=d(E)>0 | s |t|E (.) xiÎ[xi-1,xi], I=1,,it | åI=1itf(xi)Dx-I | t |t|0 {T} - . [a,b] {-} - y=f(x) [a,b] . . t [a,b] . . .[xj0-1,xj0] $ {xnjo}>0 | limn¥f(xnjo)=¥ stI=1itf(xI)Dxi=f(xio)Dxjo +åI=1itf(x)Dxi=f(xjo)Dxjo+B xiÎ[xi-1,xi] i¹jo limst(f,x1,,x0n,..,xit)=lim(f(xjo)Dxjo+B)=¥ m>0 n0 | st(f,x1,,xjo(n),,xit)>m Þ, |t|0 . , $ I=lim|t|0stÞ"E>0 $dE>0 | "t, |t|E xi - |dt-I|t|=|dt-I+I|<|dt-I|+|I| E x1,..,xit , |st|>M Þ- [a,b]. ...

#47{O} - y=f(x) (.) òa f(x)dx=0, - y=f(x) .[a,b] bòaf(x)dx=-aòbf(x)dx {-1} aòbdx=b-a - f(x)º1 [a,b] t (.) xi f(xi)=1Þsti=1itf(xi)Dxi=åi=1itDx1=(x1-x0)+(x2-x1)+(x3-x2)++(xit-xt-1)=xit-x0=b-a Þ lim|t|0st=b-a {-2} f,g [a,b] , - f+g [,b] : aòb(f(x)+g(x))dx= aòbf(x)dx+ aòbg(x)dx {} t={xi} i=it i=o xiÎ[xi-1,xi] , sE(f+g)=åi=1it(f(xi)+g(xi)Dxi=åiti=1f(xi)Dxi+åiti=1g(xi)Dxi=st(f)+st(g) .. f g - [a,b] $lim|t|0st(f)=aòbf(x)dx; $lim|t|0st(g)=aòbg(x)dx ; $lim|t|0st(f+g)=aòbf(x)dx+aòbg(x)dx .. - f+g - [a,b] aòb(f(x)+g(x))dx=lim|t|0st(f+g)=aòbf(x)dx+aòbg(x)dx {- 3} - y=f(x) [a,b] l - l×f(x) - [a,b] aòblf(x)dx=laòbf(x)dx {- 4} abf(x)dx=aòf(x)dx+òbf(x)dx {-5} y=f(x) [a,b] [c,d] Î[a.b] . {-6} - f g [a,b] - f-g [a,b] {- 7} f(x) - - [a,b] inf|f(x)|>0 ($ M>0 | " xÎ[a,b] |f(x)|>M) 1/f(x) - [a,b] {-} f(x) -- [a,b] "Î[a,b] f(x)³0 Þ aòbf(x)dx³0

#48 {T } 1) f g [a,b]; 2) m<=f(x)<=M, "Î[a,b]; 3) .[a,b] - g(x) . .. , $m | m£m£M aòbf(x)g(x)dx=m×aòbg(x)dx {-} .. [a,b] m£f(x)£M - g(x) mg(x)£f(x)g(x)£Mg(x) g(x)³0; mg(x)³f(x)g(x)³Mg(x) g(x)£0; .. f g [a,b] - maòbg(x)dx£aòbf(x)g(x)dx£Maòbg(x)dx g(x)³0; maòbg(x)dx³aòbf(x)g(x)dx³Maòbg(x)dx g(x)£0; aòbg(x)dx=0 - : aòbf(x)g(x)dx=0 Þ - aòbf(x)g(x)dx=maòbg(x)dx m; aòbg(x)dx¹0 Þ g(x)³0 aòbg(x)dx>0, g(x)£0 aòbg(x)dx<0; - aòbg(x)dx : m£aòbf(x)g(x)dx/aòbg(x)dx£M; m=aòbf(x)g(x)dx/aòbg(x)dx Þ aòbf(x)g(x)dx=maòbg(x)dx {} - y=f(x) [a,b] xÎ[a,b] , aòbf(x)g(x)dx=f(x)×aòbg(x)dx

#49 - y=f(x) [a,b]Þ [a,x] a£x£b - ò Þ F(x)= aòxf(t)dt, xÎ[a,b] - F(x) {T1} - y=f(x) [a,b], F() [a,b]. {-} xÎ[a,b] x+DxÎ[a,b] : DF=F(x+Dx)-F(x)= aòx+Dxf(t)dt-aòxf(t)dt; .. - y=f(x) [a,b] Þ$ C>0. |f(x)|£Ѡ "xÎ[a,b]Þ|DF|=|xòx+Dxf(t)dt|£×| xòx+Dxdt|=|Dx| ÞlimDx0DF=0 - . ... {T2} y=f(x) [a,b] x0 Î[a,b] Þ F(x)= aòxf(t)dt (.) 0Î[a,b] F(x0)=f(x0) {-} x0+DxÎ[a,b] DF=F(x0+Dx)-F(x0)= aòx+Dxf(t)dt- aòx0f(t)dt= aòx0f(t)dt+ x0òx+Dxf(t)dt- aòx0f(t)dt= xòx0+Dxf(t)dt |DF/Dt-f(x0)|=|1/Dx|, x0òx0+Dxf(t)dt-f(x0)/Dx=|1/Dx × x0òx0+Dx (F(t)-f(x0))dt|£1/|Dx|×| x0òx0+Dxf(t)-f(x0)dt .. - f(x) 0 E>0 $ dt>0 ||x-x0|EÞ|f(x)×f(x0)|EÞ"t 0 0+D - |t-x0|£|Dx|+dÞ |F(t)-f(x)| x0òx0+Dx(f(t)-f(x0))dt<1/|Dx|×E× xòx0+Dxdt|=E Þ $limDx0DF/Dx=f(x0)ÞF(x0)=f(x0) ...

50 - - aòbf(x)dx=(b)-()=()|b (1) {T} ( ) - y=f(x) [a,b] ()- . Þ (1) {-} F(x)= aòxf(t)dt - F(x) (x) f(x) [a,b] $ F(x)=()+; aòxf(t)dt=()+ x=a aòf(t)dt=0 Þ 0=()+Þ =-()Þ aòxf(t)dt=()-() x=b (1) ...

#51{ } 1)f(x) [a,b]; 2)x=j(t) [a,b]; 3) j(a)=a ,j(b)=b ;4)"tÎ[a;b] j(t)Î[a,b]; aòbf(x)dx = aòbf(j(t))×j(t)dt {-} [a,b] - f(j(t)); F(x)- f(x) [a,b] F(j(t)), - f(j(t))×j(t) [a,b] - aòbj(x)dx = aòbj(j(t))×j(t)dt Þ . - : aòbf(x)dx =F(b)-F(a); aòbf(j(t))×j(t)dt =F(j(b))-F(j(a))=F(b)-F(a)= aòbf(x)dx ... { } u(x) v(x) [a,b] aòbu(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v(x)dx {-} u(x)v(x) [a,b] (u(x)v(x))=u(x)v(x)+u(x)v(x) - u(x)v(x)|ab= aòb (u(x)×v(x)+u(x)×v(x))dx= aòbu(x)×v(x)dx+ aòbu(x)×v(x)dx Þ aòbu(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v(x)dx

#52( ) R; R - .; , R, . A-òA B-òB ; d- , d0 òA òB , - , ò; - f(x) [a,b] f(x)³0 "xÎ[a;b] x=a, x=b. t={xi}i=0i=it- [a,b]; git={(x,y), xÎ[xi-1,xi], 0£y£mi=inff(x)} Git={(x,y), xÎ[xi-1,xi], 0£y£Mi=supf(x)}; Sgti=1itmiDxi; SGti=1itMiDxi {T} , - f(x) [a,b] . : lim|t|0(Sgt-SGt)=0 {} .. - f(x) [a,b] . Þ lim|t|0SGt= lim|t|0Sgt=S= aòbf(x)dx {} r=f(j), f(j) [a,b] f(j)³0 "jÎ[a,b] {} t- git={(j,r), jÎ[ji-1,ji], 0£r£mi=inff(j)} Git={(j,r), jÎ[ji-1,ji], 0£r£Mi=supf(j)} .. - f(x)- [a,b] Þ git=m²iDj/2 Git=M²iDj/2; Sgt=1/2×åi=1itm²iDj SGt=1/2×åi=1itM²iDj Þ lim|t|0SGt= lim|t|0Sgt=S=1/2× aòtf²(j)djÞ P- Sp=1/2× aòbf²(j)dj.

#53 y=f(x) [a,+¥) " [a;b] Þ [a,+¥) - f(x) aò+¥f(x)dx=limb+¥ aòbf(x)dx. , aò+¥f(x)dx , , . {} Î[a,+¥) Þ aòbf(x)dx= aòcf(x)dx+ còbf(x)dx {} - aò+¥f(x)dx c Û limb+¥ aòbf(x)dx {} (2) , : E > 0 b0 < b0 < b, , |F(b)-F(b) b' b", b0 < b' < b" < b. F(b)-F(b)=bòbf(x)dx Þ . {O} (a;b] - f(x) aòbf(x)dx= limxa+0 aòbf(x)dx. ò , . {} aòf(x)dx òbf(x)dx abf(x)dx- . {-} f(x) [a,b) . abf(x)dx= limhb-0 F(h)-F(a)=F(x)|ba $aòbf(x)dx Û $limhb-0 F(h) {} abf(x)dx=F(h)-F(a) Þ - aòbf(x)dx= limhb-0 F(h)-F(A){2} aòbf1(x)dx aòbf2(x)dx -, aòb (mf1(x)+l aòbf2(x))dx=m aòbf1(x)dx+l aòbf2(x)dx {} ah (mf1(x+lf2(x))dx= maòh f1(x)dx+laòh f2(x)dx .. . $limhb-0aòh f1(x)dx $limhb-0aòh f2(x)dx Þ - . {3} f(x)<=g(x), xÎ[a,b] b aòbf(x)dx, aòbg(x)dx , aòbf(x)dx<= aòbg(x)dx {} a aòhf(x)dx<= aòhg(x)dx - limhb-0 {4} u(x) v(x) [a,b) Þ aòbu(x)v(x)dx=u(x)v(x)|ba- aòbu(x)v(x)dx {} ahu(x)×v(x)dx = y(x)v(x)|ah - aòhu(x)×v(x)dx Þ - 3- ; - . .; {5} f(x) [a,b), x=j(t) [a,b) , a<=ttb-0j(t) : aòbf(x)dx= aòbf(j(t))j(t)dt {} xÎ[a,b) .. - [a,b) . [a,x] [a,j(x)] Þ ò .

#54 f(x) [a,b) -¥bf(x)dx , aòhf(x)dx, a0 | aòhf(x)dxbg(x)dx- , Þ aòbf(x)dx aòbg(x)dx Þ aòbf(x)dx . {-} .. f(x)=O(g(x)), xb-0 Þ (.)   . .. aòbg(x)dx Þ aòbf(x)dx Þ 1Þ"h,(h0,b) h0òhg(x)dx£M(M=const) Þ " xÎ(h0,b) h0òhf(x)dx£C h0òhg(x)dx£CM Þ h0òhf(x)dx , 1 h0òbf(x)dx-Þaòbf(x)dx ; aòbf(x)dx- Þaòbg(x)dx- { } - [a,b) f(x),g(X)³0 $ limxb-0f(x)/g(x)=k, 1) 0£k<+¥ aòbg(x)dx Þ -aòbf(x)dx; 2) 0bg(x)dx Þ -aòbf(x)dx; 0£k<+¥ aòbg(x)dx aòbf(x)dx .{-} 1. 0£k<+¥ E=1 $(h0,b) | " xÎ(h0,b) |f(x)/g(x)-k|bg(x)dx , aòbf(x)dx-. 2) 01 k=+¥ |f(x)/g(x)-k|k/2 Þ g(x)<2f(x)/k; g(x)=O(f(x)), xb-0 Þ 2 Þ aòbg(x)dx Þaòbf(x)dx .

#55aòbf(x)dx- . aòb |f(x)|dx aòbf(x)dx- , aòb |f(x)| dx aòbf(x)dx- . {} . , aòb |f(x)| dx , E>0 (, b) b0 , b0 < b' < b" < b, E> bòb |f(x)| dx³| bòb f(x)dx . . aòbf(x)dx . |aòbf(x)dx|£ aòb |f(x)| dx b'b aòb f(x)dx |aòb f(x)dx|£ aòb |f(x)| dx { ò} - y=f(x) . -¥ò+¥f(x)dx v.p. ¥ò+¥f(x)dx=limh+¥ -hò+hf(x)dx; ¥ò+¥ . . - f(x) . [a,c-E],[c+E,b], E>0 . . . ò v.p. aòbf(x)dx=limE0 (aòC-Ef(x)dx +C+Eòbf(x)dx)

#56 { } f(x) , [1;+¥) å(n=1,+¥)f(n) 1ò+¥f(x)dx {-} .. - [1,+¥) [1,h]Ì[1,+¥) Þ .. - [1,+¥) =1,2,3 f(k)>=f(x)>=f(k+1), k<=x<=k+1 Þ kòk+1f(x)dx>=kòk+1f(k+1)dx Þ f(k)>= kòk+1f(x)dx>=f(k+1) Þ å(k=1,n)f(k){=Sn}>=å(k=1,n){= 1òn+1f(x)dx} kòk+1f(x)dx>=å(k=1,n)f(k+1){=Sn+1-f(1); Sn>= 1òn+1f(x)dx>=Sn+1-f(1) ; 1ò+¥f(x)dx Þ $M>0 | "hÎ[1;+¥) 1òhf(x)dx<=M Þ Sn+1-f(1)<= 1òn+1f(x)dx<=M Þ Sn+1<=M+f(1) "n; - Þ ; , n=1,2,3 1òn+1f(x)dx<=Sn<=M "n .. hÎ[1,+¥) $n Î N | h<=n 1ònf(x)dx<= 1òhf(x)dx+ hòn+1f(x)dx= 1òn+1f(x)dx<=M .. 1 h f(x)dx , 1ò+¥f(x)dx-.

1. n- Rn. . . Rn.

2. . , , .

3. . . .

4. . , . .

5. . . . ( } f(), . .

6. . . .

7. .

8. . . .

9. . . . - .

10. . .

11. .

12. .

13. .

14. . , . . .

15. .

16. . .

17. .

18. . .

19. . . .

20. .

21. . . .

22. . .

23. , .

24. .

25. .

26. . .

27. . .

28. .

29. . .

30. . .

31. . .

32. .

33. .

34. .

35. .

36. .

37. . .

38. .

39. .

40. .

41. .

42. . .

43. . .

44. .

45. .

46. .

47. ,

48. .

49. . .

50. -

51. .

52. . 53. . .

54. . .

55. . .

56. .

#1{ } n - p(x,y) n- Rn. { - R ''} x&Icirc;R''

 

 

 

! , , , .
. , :