,,,
#1{ } n - p(x,y) n- Rn. { - R ''} xÎR'' R "xÎX $ e >0 U(x,e) . R'' R'' - ՠ - { -.} (x,r) - r -젠 1 r(x,y)=0 Û x=y1; 2) p(x,y)= p(y,x) " x,yÎX; 3) p(x,y)<= p(x,z)+p(z,y) " x,y,z ÎX r (,)- /
#2 - - , . - . {}- =f(u) u=j(x) .. - - f u {}- - : ** +**=1 - {} 2 - =f(t) =y(t) f:TX y:TY t=l(x) l:X T - f:XY f(x)=y(l(x)) - f - f(t) y(t) {} - f:ծY Y g:YX "yÎY g(y)=x Îՠ f(x)=y f f( -1)
#3 - f: NX
- f(n) n-
n c f:NX {Xn} n n=1,2,3 {Xn}
=lim(n¥)xn "e>0 $ne =n(e)ÎN n>ne - /n-/
#4 {xn} lim(n¥)xn=0 {xn}
. {xn}
1/{xn} - . {xn} => "e>0 $ne=n(e) n>ne /xn/>1/e => 1//xn/
#5 { -} f(x)
. .
- xa "E>0 $ d=d(E)>0
: "x 0<|x-a|
#6 { - .}
lim - f(x) =lim(a¥)f(x) Û f(x)=A+j(x) ;堠 j(x) - {-}
=lim() f(x) ; j(x)=f(x)-A j(x)- . " e>0
$ d e
d(e)>0
", 0
/f(x)-A/ #7{ -} $limxaf(x)=A $limyAg(y)=B U(a,d1) - g(f(x)) f(x)¹ $limxag(f(x))=limyAg(y) {-} "E>0 .. $ limyAg(y)=B Þ $s>0 |"y ,
0<|y-A| #8{ -} f(x) O-
- - g(x) - f(x) =O(g(x))
E , $
C>0 | |f(x)|£C(g(x)) "x Î E f(x)=O(1) E
Þ f(x)
.. $ >0 | |f(x)|£C
"xÎE
- f(x) g(x) (.)
(.) f(x) o- g(x) xa
f(x)=o(g(x)), xa ,
f(x)=E(x)g(x), limxfE(x)=0
x²=o(x), x0 f(x)=og(x) , xa
E(x)=x h(x)=o(g(x)), xa; j(x)+h(x)=o(g(0))+o(g(x)=o(g(x))
xa f(x) O- g(x) xa, $
U(a) | f(x)=O(g(x)) U(a) f(x)=O(g(x)), xa - f(x) g(x) xa,
-
0 (.)
$ limxaf(x)/g(x)=1 f(x)~g(x) xa {}
, - f(x) g(x) ,
f(x)=g(x)+o(g(x)) xa
g(x)¹0 (x¹a)
{-} f(x)~g(x) , xa
g(x) 0 U(0) $ limxaf(x)/g(x)=1 Þ $ E(x), E(x)0
xa | f(x)/g(x)=1+E(x)Þ f(x)=g(x)+E(x)g(x)=g(x)+o(g(x)), xa.
f(x)=g(X)+o(g(x)) xa , g(x)+o(x+a) f(x)=g(x)+E(x)g(x), limxaE(x)=0 Þ f(x)/g(x)=1+E(x) Þ limxaf(x)/g(x)=1 Þ f~g(x) xa
{ -} f(x) g(x) .. - xa
g(x)¹0 U(a) {O} f(x)/g(x) xa
0 , - .. .
f(x)/g(x)=0 f(x)
.. g(x) xa {O} - f(x)
.. - .. g(x) xa,
- f(x) gk(x) .. xa
9{ - } -
()f(a)=f(a+h)-f(a) h=0 "e >0 $ d=d(e)>0 "h /h/ #10{- - } {
-} - f(x)
[a,b] .
(.) (a,b) f(c)=0 {T2}
- f(x) X([c,d],[c,d),(c,d],(c,d))
. a,b Î X , a0 Þ $ Î(a,b) | j(c)=0 Þ f(c)-C=0Þ f(c)=C {}- f(x)
[a,b]
.{} - f(x)-
[a,b]
$a.b Î[a,b] | f(a)=minf(x) xÎ[a,b]; f(b)=maxf(x) xÎ[a,b] f(a)<=f(x)<=f(b) "x Î[a,b]. {
} - y=f(x) - ÎRn
"e>0
$d=d(e)>0
| "x,xÎX,r(x,x) #11 { - } - f(x)
. , a - g(y) b =f(a)
-=g(f(x))
{-} "e>0
- g() b
d>0 " /-b/ #12 { -} =f(x)
"Î [a,b] "Î[A,B] , - x=j(y)
{} y0Î[A,B] Þ x0=j(y0), f(x0)=y0 x0Î(a,b) ; e>0
, [x0-e,x0+e]Ì[a,b] y1=f(x0-e)
y2=f(x0+e)
- f "yÎ(y1,y2)Þx=j(y)Î(x0-e,x0+e)
[A,B] [a,b] Þ e>0
(.) 0 (1,2) | "Î(1,2) j(y)Î(x0-e;x0+e)
e +e
Þ - j
- . 0 . {} 0= Þ 0=j(y0)=b e #13 { -} 1)f(x)=C
. Df(x)=f(x+h)-f(x)=C-C=0; limh0Df(x)=0; 2) f(x)=x; Df(x)=x+h-x=h
Þlimh0h=0; 3)f(x)=xn, nÎN
, - Þ xn=xn-1×x; 4)f(x)=a0xn+a1xn-1++an-
-; 5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1++an)/(b0xm+b1xm-1+..+bm)-
,
. 0 -.;6) f(x)=sinx
"xÎR, |sinx|<=|x| .Ð(OB,ox)=Ðx; Ð(OB,ox)=Ðx 0<=x<=p/2 .. Þ |BB|<=BAB ;
|BB|=2Rsinx; BAB{}=2Rx Þ 2Rsinx<=2rx; sinx<=x ; -p/2<=x<0 |sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=p/2 |x|>p/2 Þ |sinx|<=1 h0sinh/2=0 7.f(x)=cosx |Df(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2| |h|0;
8)f(x)=ax ,a>=0 Df=(ax+h-ax)=ax(ah-1) limh0ax(ah-1)=0; 9)f(x)=logax a>0 a¹1 (0,+¥) 10)arcsinx, arccosx . . #14 { }
{an}
. 1+2+3n
12- å n 1-
{ } ån lim(n¥)an=0 - åan $
lim(n¥)Sn=S=lim(n¥)S(n-1) lim(n¥)an = lim(n¥)(Sn-S(n-1)) = lim(n¥)Sn-lim(n¥)(Sn-1)=0 . {
} - å(n=1,¥)an ó "e >0 $ ne n>ne "Î Z p>=0 /n+an+1+an+2+an+p/ #15 {- } å+¥n=1an -
- ,
. {} åk=m+1+¥ak- . n=a1++an n-
å(1,+¥)an As=am+1++am+s s- åk=m+1+¥ak, As=Am+s-Am .. $limnaAnÞ $ limS+¥Am+SÞ $limS+¥AS=lims+¥Am+S-Am Þ åk=m+1+¥ak cx-c; åk=m+1+¥ak - ; Am+S=AS+Am; n=m+s Þ An=An-m+Am (n>m) .. $lims+¥ASÞ$limn+¥An=m Þ $limn+¥A=limn+¥An-n+Am Þ ån=1+¥an . {} å(1,+¥)an - an=å(k=n+1,+¥)ak Þlimn+¥an=0 {} An=å(1,n)ak, A=limn+¥An Þ A=An+anÞan=A-A1 Þ limn+¥an=A-limn+¥An=0 {} å(n=1,+¥)an å(n=1,+¥)bn - l-, å(n=1,+¥)(an+bn) - å(n=1,+¥)lan - {} n=å(k=1,n)ak, Bn=åk=1nbk;
A=limn+¥An, B=limn+¥Bn; $limn+¥(An+Bn)=A+B, $limn+¥lAn=lA .. An+Bn=(a1+b1)++(an+bn)- n- å(n=1,+¥)(an+bn) lAn=la1++lan- n- . #16{T }
2 å(n=1..¥)an å(n=1..¥)bn n>=0 bn>=0 (n=1,2,3) $
no n>no n #17{ (
)} åan an>0 n=1,2,3 (n+1)/an <=q<1 (n=1,2,3) => q>=1 {-} n=
a1*a2/a1*a3/a2an/a(n-1)<=a1qq=a1qn-1 q<1 .. å(n=1,+¥)qn-1 c- => å(n=1,+¥)n c- (n+1)/an >=1 => (n+1)>=an>=>=a1>=0 lim(n¥)an¹0 => { }
: $limn+¥an+1/an=k; 1)k<1 ; 2)k>1
. {-} k<1 e>0 |k+e<1Þ$ n0 | n>n0 an+1/an #18 {O}
ån=1+¥(-1)n-1an, an>0{ } å(-1)n-1
n cn>0; 1)C(n+1)<=C(n) n=1,2,3; 2)Lim(n¥)(Cn)=0 {-} c
S2k : S2k=(c1-c2)+(c3-c4)++(c(2k-1)-c(2k)) ..
S2k=c1-(c2-c3)--(c(2n-2)-c(2n-1))-c2n {
}
1- #19 ån=1¥an
å|an|. åan c å|an| - . {
} {}
ån=1+¥an - Þ ån=1+¥|n| -- Þ "e>0 $ne| n>ne "pÎZ p>=0
- -: |an+an+1++an+p|<=|an|++|an+p| #20{ } {} - zn=xn+iyn, n=1,2
z0=x0+y0 "e>0 $
ne | n>ne |zn-z0| #21{ } {O} f(x) .
0- -
, 0; f'(x0)=limDx0(f(x0+Dx)-f(x0))/Dx {O} A=const D
. - f . 0 dy df(x);
D dx
.. dy=Adx {} - f(x) (.) x0
- (.) 0 {-} Dy=f(x0+Dx)-f(x0) .. $
limDx0Dy/Dx=f(x0)Þ Dy/Dx=f(x0)+a(Dx), a(Dx) 0 D0
Þ Dy=f(x0)×Dx+a(Dx), a(D)0
D0 Þ Dy=f(x0)Dx+a(Dx)DxÞ limDx0Dy=0 Þ f(x)- .0 {O}y=f(x)-
U(x0) .0 =0 D=f(x0+Dx)-f(x0),
x0+DxÎU(x0)
D=D+(D),
D0{} , - y=f(x)
,
. {-} y=f(x) - 0 Þ Dy =f(x0+Dx)-f(x0)= ADx+o(Dx), Dx0; limDx0Dy/Dx= limDx0(A+o(Dx)/Dx)=A; ..
. 0 $f(x0)=limDx0Dy/Dx=A {}
- y=f(x) . 0 $f(x0)=limDx0Dy/DxÞDy/Dx=f(x0)+e(Dx), limDx0e(Dx)=0 Þ Dy=f(x0)Dx +e(Dx)DxÞ Dy=f(x0)Dx+o(Dx), Dx0 Þ - f- . 0 22 { } - y=f(x)-
(a;b) x0, x0+DxÎ(a,b), y0=f(x0), y0+Dy=f(x0+Dx) M0(x0,y0) M(x0+Dx,y0+Dy){} MM0
- y=y0+k(Dx)(x-x0), k(Dx)=Dy/Dx; y=f(x) .(0) D0
D0 Þ|M0M|=Ö(Dx²+Dy²)0 D0
MM0 {}
$ limDx0k(Dx)=k0
y=y0+k(Dx)(x-x0)
- k(Dx)=Dy/Dx D0
- =f(x) (.) (0,0) .. k(Dx)=Dy/Dx, k0=limDx0k(Dx)= limDx0Dy/Dx=f(x0) Þ y=y0+f(x0)(x-x0) ; f(x0)=tga; y=y0+k0(x-x0)
; y=y0+k(Dx)(x-x0) Þ M0M .. f(x0)(x-x0)=dy dy=y-y0
- . .. - (.) 0
.{ .} - y=f(x) (.)
(0,0)
-. , ,
k=-1/f(x0) ; y-f(x0)=-1×(x-x0)/f(x0) x y #23 - U(x) V(x) (.)
d(U+(-)V)=(U+(-)V)dx=(U+(-)V)dx=Udx+(-)Vdx=dU+(-)dV; 2)d(U×V)=(U×V)dx=(UV+VU)dx=UXdx+VUdx=Vdu+Udv; 3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V²=(U'Vdx-VUdx)/V²=(Vdu-Udv)/V² 24 { -.} Dh: : z=f(y) -
. y0 ; y=j(x) . 0 . y0=j(x0) - z=f(j(x))- . 0 : zx=zy×yx=f(y)×j(x) ; dz/dx=dz/dy × dy/dx {}.. z=f(y) -
. y0 ÞDz=f(y0)Dy+a(Dy); .. y=j(x)- . 0 ÞDy=j(x0)Dx+b(Dx); Dz=f(y0)j(x0)Dx+f(y0)b(Dx)+a(Dy); . y=j(x) -
. 0
Þ (Dx0ÞDy0). t(Dx)=f(x0)b(Dx)+a(Dy); limDx0t×Dt/Dx; limDx0t(Dx)/Dx= limDx0[f(x0)×b(Dx)/Dx+a(Dy)/Dx]= limDx0a(Dy)/Dx= limDx0a(Dy)/Dy× limDx0Dy/Dx=j(x0); D(f(j(x)))=(f(y0)j(x0))Dx+t(Dx), limDx0t(Dx)/Dx=0Þ (f(j(x)))x=zx=f(y0)j(x0) #25 { -.} y=f(x)
0 : 1) f(x)¹0, 2) ,
0, - y=f-1(x)=j(y) 3) y0=f(x0);
(.) 0 f(j)¹0, j'(y0)=1/f(x0).
{-} x=j(y)
. x¹x0y¹y0ÞDx¹0 Dy¹0Þ Dy/Dx=1/Dy/Dx ;
y=f(x) . x0 limDx0Dy=0ÞDx0ÞDy0 $f(x0)=limDx0Dy/Dx= limDy01/Dy/Dx=1/limDy0Dx/Dy=1/j(y0) ; f(x0)¹0Þj(y0)=1/f(x0) #26 { } y=[u(x)]v(x),u(x)>0; lny=v(x)lnu(x); y'/y=v(x)lnu(x)+v(x)×u(x)/u(x); y=uv×(vlnu+v×u/u); (lny)=y/y-
- {
-} 1) y=Const Dy=c-c=0ÞlimDx0Dy/DxÞ(C)=0 ; 2) y=sinx Dy=cosx 3)(cosx)=-sinx 4) (ax)=axlna 5)(arcsinx)=1/Ö1-x² 6)(arccosx)=-1/Ö(1-x²) 7) (arctgx)=1/(1+x²) 8) (arcctgx)=-1/(1+x²) 9) (lnx)=1/x ; 10) (xa)=a×xa-1 #27 { . }{}
y=f(x); f(n)(x)=(f(n-1)(x)) ..
- y=f(x) (.)
n- ,
(.) 0
n-1 , (.) 0 f(n-1)(x0)
. n- - f {} n-
} {} dnf(x)=d(dn-1f(x))
, dx
d²y=d(dy)=d(f(x)dx)=df(x)dx=f(x)dx²; dny=f(n)(x)dxn ;f(n)=dny/dxn ) uv(n) = u(n)v + Cn1 u(n-1)v' +Cn2 u(n-2)v'' + +C1n u(n-k)v(k)
+ uv(n)
=åk=0nCkn u(n-k)v(k),( ), Cnk =n!/k!×(n-k)! , 0! = 1, v(0) =
v. (u + v)(n) = åk=0nCkn
u(n-k)v(k) - . . #28 { } x=x(t), y=y(t) t0 t=t(x) x0=x(t0)
- ()=(t(x))
. x(t) g(t) . 0
- ()=(t(x))
(.) 0 Ԓ(x)=yt(t0)/xt(t0)
- Ԓ(x0)=yt(t0)×tx(x0); tx(x0)=1/xt(t0) ((0)=yt(t0)/xt(t0) x(t0)¹0 - x(t) g(t) x(t0) y(t0)
Ԓ(x0) =(Ԓ(x))x|x=0=(yt/x) x|x=x0=(yt/xt|t|t=t0×tx|x=x0=ytt(t0)×xt(t0)-yt(t0)×xtt(t0)/(xt(t0)) #29 ().
f(x)
() , f()=0. .
, f(x) .
f(c)=limDx0(f(c+Dx)-f(c))/Dx ; f(c)>=f
(x) "xÎU(), Dx> 0 ;(f(c+Dx)-f(c))/Dx Dx0 , f()<=0.
Dx<0, (f(c+Dx)-f(c))/Dx>=0 , Dx0 , , f()>=0.
, f'(c)=0. #30 (). y=f(x)
[, b], (, b) f () ==f(b), cÎ0(,b), , f'(c)=0. . f [, b],
cÎ(a, b) f'(c)=0.
, f
[, b]. f [, b], x1Î [, b], f
[, b] 2Î[, b], f [, b].
[,b], maxf(x)=minf(x)=f(a) =f(b) f [, b]. ,
x1,2 (, b).
c. . , f'(c) ,
f'(x) Î(, b). f(c)=0.{}
. ,
y=f(x) (c,f(c))
. #31 (). f(x)
[, b]
(,b).
(, b) , (f(b)-f(a))/(b-a)=f'(c) (<(c)-(f(b)-f(a))/(b-a)=0 ࠠ
,
(f(b)-f(a))/(b-a)=f(c)
(a #32().
f(x)
g(x) [, b]
(, b), g'(x)¹0 (, b), cÎ(a, b) , ( f(b)-f(a))/(g(b)-g(a))=f(c)/g(c) .
, g(b)-g(a)¹0,
, g ,
g'(c)=0, .
F(x)=f(x)-f(a)-(f(b)-f(a))×(g(x)-g(a))/(g(b)-g(a)) F
[, b], (, b) F(a)=0,
F(b)=0. ,
, cÎ(a, b), F'(c)=0 F(x)=f(x)-(f(b)-f(a))×g(x)/(g(b)-g(a)) , c, . #33( ) 1)- f(x) g(x)
(a,b] ;2) limxa+0f(x)=limxa+0g(x)=0; 3)
() f(x) and g(x) (a,b] y¹0 ; 4) (
) limxa+0f(x)/g(x)=k limxa+0f(x)/g(x)=k
{-} - f(x) g(x) x=a
f(0)=g(0)=0 ; [a;b] -
(.. .a f g
,
) . f(x)/g(x)=(f(x)-f(a))/(g(x)-g(a)=f(c)/g(c); a #34 - {} - y=f(x)
(a,b) .Î(a,b) n
f(x),f(x),,f(n)(x); f(x)=f(x0)+f(x0)(x-x0)/1!+
f(x0)(x-x0)²/2!++ f(n)(x0)(x-x0)(n)/n!+o((x-x0)n)- . f(x)=f(x0)+f(x0)(x-x0)/1!+
f(x0)(x-x0)²/2!++ f(n)(x0)(x-x0)(n)/n!+f(n+1)(c)(x-x0)n+1/(n+1)!- . Pn(x)=f(x0)+f(x0)(x-x0)/1!++f(n)(x0)(x-x0)n/n!--
n, - rn(x)=f(x)-Pn(x)-
- ; =0 - . {} Pn(x)=A0+A,(x-x0)n ;Pn(x0)=f(x0), Pn(x0)=f(x0),,Pn(n)(x0)=f(n)(x0) (1) Pn(x)=A0+a1(x-x0)++An(x-x0)n;Pn(x0)=f(x0),Pn(x0)=f(x0),,Pn(n)(xn)=f(n)(x0); Pn(x)=A1+2A2(x-x0)++nAn(x-x0)n-1 ; Pn(x)=2×A2+3×2×A3(x-x0)+.+n(n-1)An(x-x0)n-2
;Pn(n)=n×(n-1)×(n-2)××An; P(x0)=A0=f(x0); Pn(x)=f(x0)+f(x0)(x-x0)/1!+fn(x0)(x-x0)²/2!++f(n)(x0)(x-x0)n/n!; Pn(x0)=f(x0), Pn(x0)-f(x0),,Pn(n)(x0)=f(n)(x0) ; rn(x)=f(x)-Pn(x) .. rn(n-1)(x) - (×) x0 limxx0rn(n-1)(x)/(x-x0)= limxx0
(rn(n-1)(x))-rnn-1(x0)/(x-x0)=rnn(x0) limxx0rn(x)/(x-x0)n= limxx0rn(x)/n(x-x0)n-1== limxx0rn(n-1)(x)/n!(x-x0)=rn(n)(x)/n!=0 Þrn(x)=o((x-x0)n),xx0 #35
- . 1)f(x)=ex, f(0)=1, f(k)(x)=ex, f(k)(0)=1, ex=1+x+x²/2!++xn/n!+o(xn), x0; 2)f(x)=sinx, f(0)=0, f(x)=cosx, f(x)=-sinx, f(x)=-cosx, f(IV)(x)=sinx,; f(k)(x)={(-1)msinx, k=2m {(-1)m-1cosx, k=2m-1 m=1,2,; f(2m-1)(0)=(-1)m-1
n=2m
sinx=x-x3/3!+x5/5!-+(-1)n-1x2m-1/(2m-1)!+o(x)2m,x0; cosx=1-x²/2!+x4/2!-x6/6!+.+(-1)mx2m/(2m)!+o(x2m+1),x0; 4)f(x)=ln(1+x)f(0)=ln1=0, f(x)=1/(1+x), f(x)=-1/(1+x)², f(x)=2/(1+x)3,f(k)(x)=(-1)k-1(k-1)/(1+x)k ;f(k)(0)=(-1)k-1×(k-1)!
Þ l(1+x)=x-x²/2+x3/3+..+(-1)n-1xn/n+o(xn),x0 ; 5)f(x)=(1+x)b f(0)=1, f(x)=b(1+x)b-1,
f(x)=b(b-1)(1+x)b-2; f(k)(x)=b(b-1)(b-k+1)(1+x)b-k ;f(k)(0)=b(b-1)(b-k+1); (1+x)b=1+b×x+b(b-1)x²/2!++b(b-1)(b-n+1)xn/n!+o(xn), x0 #36
-. {} - f(x) (a,b),
, - ()
f(x)>=0 (f(x)<=0)
f(x)>0 (f(x)<0),
- () (a;b) {} f-
() x0Î(a,b), Dx>0, f(x0+Dx)-f(x0)>=0; Dx0; (Dy<=0) Þ Dy/Dx>=0 (Dy/Dx<=0) Þ f(x0)=limDx0Dy/Dx>=0 (f(x0)<=0);
{} " xÎ(a,b) f(x)>=0 (f(x)<=0) a #37{} (×) x0
- f(x), =0
. {} .. (.) x0 Þ $ U(x0,d)
| " xÎU(x0,d)
f(x)>=f(x0) f(x)<=f(x0) ..
(.) x0 - y=f(x)
.U(x0,d)Þ =0 {}
: - y=f(x)
(.) x0 0
. 0 -
(.. $ d>=0
| " xÎ(x0,x0+d]
f(x)<0 (or f(x)>0),
" xÎ(x0-d,x0] f(x)<0 (or f(x)>0) 0
xÎ(d,x0+d);
f(x)>0,a xÎ(x0-d,x0) f(x)<0
x0 , xÎ(x0-d,x0) f(x)<0,
xÎ(x0,x0+d)
f(x)>0 xo-. {} xÎ(x0-d,x0) f(x)>0
xÎ(x0,x0+d)
f(x)<0. Df=f(x)-f(x0)=f(x)(x-x0) x
0 >x0 Þ x-x0>0 x0 #38 y=f(x)
- ()
"x1,x2 ÎX - f(q1x1+q2x2)<=q1f(x1)+q2f(x2) (f(q1x1+q2x2)>=q1f(x1)+q2f(x2)),
" q1>0,q2>0, q1+q2=1
: x=q1x1+q2x2 (x1 #39
:
- y=f(x) >A=const
- f(x) x>A.
L: - : y=ax+b.
(x,f(x)) L 0
, +¥ -¥{} L r(x)=|f(x)-ax-b|/Ö(1+a²) .. L limx+¥r(x)=0Þ limx+¥(f(x)-ax-b)=0Þ limx+¥(f(x)/x-a-b/x)=0Þ limx+¥(f(x)/x-a)=0Þ a= limx+¥f(x)/x ; b= limx+¥(f(x)-ax).
limx+¥f(x)/x
lim +¥ . = b y=ax+b
. {} - y=f(x)
. 0 -
limx0-0f(x)=¥ limx0+0f(x)=¥ =0 . #40
{O} - F(x)
- f(x)
-
F(x)=f(x) {T}
- F(x) j(x)
- f(x)
const {-} F(x)
f(x) F(x)=f(x) Þ(F(x)+c)=F(x)=f(x)ÞF(x)+c- f(x) F(x) j(x)
f(x) - y()=F(x)-j(x)
y(x)=F(x)-j(x)=f(x)-f(x)=0
1,x2ÎX
Þ y(2)-y(1)=y(c)(x2-x1)=0 .
y(x2)=y(x1) Þy(x)=c=const {T} F1(x) F2(x)-
f(x) (a,b), F1(x)-F2(x)=C (a,b), C-
. #41
{O} - f(x) -
- f(x)
òf(x)dx ;
F(x)- f(x) òf(x)dx=F(x)+C; {C-} 1) - F(x)
, òF(x)dx=F(x)+C; 2)
- f(x)
d(òf(x)dx)=f(x)dx; 3) f1 and f2 - f1+f2
ò(f1(x)+f2(x))dx=òf1(x)dx+òf2(x)dx {} F1(x)-
f1(x), F2(x)- f2(x),
F1(x)+f2(x)- f1(x)+f2(x), ..
(F1(x)+F2(x))=F1(x)+F2(x)= f1(x)+f2(x); 5) F(x)
f(x), òf(ax+b)dx=1/aF(ax+b)+C {} [1/aF(ax+b)]=1/a×aF(ax+b)=f(ax+b); #42
ò: f(x)
=j(t)
- t, òf(x)dx=òf(j(t))j(t)dt+C=òf(j(t))d(j(t))+C--
. { } - U(x),V(x)
òU(x)V(x)dx
òV(x)×U(x)dx=U(x)×V(x)-òU(x)×V(x)dx -
. {-} .. - U(x) V(x)
(U×V)=UV+UVÞUV=(UV)-UV; .. òUVdx $
ò(UV)dx=UV+C $òUVdx=ò(UV)dx-òUVdx=UV-òUVdx+C Þ òUVdx=UV-òUVdx; òexsinxdx=exsinx-òexcosxdx=|U(x)=ex V(x)=sinx|=exsinx-(excosx-òexsinxdx); òexsinxdx=exsinx-excox-òexsinxdx; 2òexsinxdx=exsinx-excosxÞ òexsinxdx=(exsinx-excosx)/2 #43
n n
Pn(z)=A1(z-z1)k1××(z-zs)ks,
k1++ks=n; - -
Pn(z)ÞPn(z)=(z-a)m×Qn-m(z)Þ a- - m
Pn(z); Pn(x)-
, Pn(x)ºPn(x) xÎR
:
Pn(x) . .. (z-a)(z-a) Þ Pn(x)=(x-a1)a1××(x-ar)ar×(x-z1)b1××(x-zs)bs×(x-zs)bs=(x-a1)a1××(x-ar)ar×(x²+p1x+q1)b1××(x²+psx+qs)bs; Pj²/4-qj<0, j=1,,s; a1,,arÎR, Pj,qjÎR {}
Px Qx ,
degP(x) #44 - R(x,mÖ(ax+b)/(cx+d)
. t=mÖ(ax+b)/(cx+d) . tm=(ax+b)/(cx+d); x=(b-dtm)/(ctm-a) - t; dx=(mtm-1(ad-bc)dt)/(ctm-a)² Þ òR(x,mÖ(ax+b)/(cx+d))dx=òR((b-dtm)/(ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)²=òR1(t)dt. R1(t)-.{} òR(x,Öax²+bx+c)dx, -
, b, c
. ax²+bx+c
1 2 ax²+bx+c=a(x-x1)(x-x2) R(x,Öax²+bx+c)=R(x,(x-x1)Ö(x-x2)a/(x-x1)=R1(x,Ö(x-x2)/(x-x1) ; ax²+bx+c
>0. () t=Ö(ax²+bx+c) +xÖa
Þax²+bx+c=t²-2xtÖa+ax²; x=(t²-c)/2t(Öa)+b
- t .. ; <0 >0 (ax²+bx+c)>=0)
Öax²+bx+c=xt+Öc {}{} #45
R(cosx,sinx); òR(cosx,sinx)dx t=tg(x/2) (-p #46
{O} t[a,b]
- xi, I=0,1,,it x0=a #47{O} - y=f(x)
(.) òa f(x)dx=0,
- y=f(x) .[a,b]
bòaf(x)dx=-aòbf(x)dx {-1} aòbdx=b-a - f(x)º1 [a,b]
t (.) xi f(xi)=1Þst=åi=1itf(xi)Dxi=åi=1itDx1=(x1-x0)+(x2-x1)+(x3-x2)++(xit-xt-1)=xit-x0=b-a Þ lim|t|0st=b-a {-2} f,g
[a,b] , - f+g
[,b] : aòb(f(x)+g(x))dx= aòbf(x)dx+ aòbg(x)dx {} t={xi} i=it i=o
xiÎ[xi-1,xi] , sE(f+g)=åi=1it(f(xi)+g(xi)Dxi=åiti=1f(xi)Dxi+åiti=1g(xi)Dxi=st(f)+st(g) .. f g -
[a,b] $lim|t|0st(f)=aòbf(x)dx; $lim|t|0st(g)=aòbg(x)dx ; $lim|t|0st(f+g)=aòbf(x)dx+aòbg(x)dx .. - f+g
- [a,b] aòb(f(x)+g(x))dx=lim|t|0st(f+g)=aòbf(x)dx+aòbg(x)dx {- 3} - y=f(x)
[a,b]
l - l×f(x) -
[a,b]
aòblf(x)dx=laòbf(x)dx {- 4} a #48
{T } 1) f g [a,b]; 2) m<=f(x)<=M, "Î[a,b]; 3) .[a,b] - g(x) . ..
, $m
| m£m£M aòbf(x)g(x)dx=m×aòbg(x)dx {-} .. [a,b] m£f(x)£M
- g(x) mg(x)£f(x)g(x)£Mg(x) g(x)³0; mg(x)³f(x)g(x)³Mg(x) g(x)£0; .. f g
[a,b] -
maòbg(x)dx£aòbf(x)g(x)dx£Maòbg(x)dx g(x)³0; maòbg(x)dx³aòbf(x)g(x)dx³Maòbg(x)dx g(x)£0; aòbg(x)dx=0 - : aòbf(x)g(x)dx=0 Þ - aòbf(x)g(x)dx=maòbg(x)dx m;
aòbg(x)dx¹0 Þ g(x)³0 aòbg(x)dx>0, g(x)£0 aòbg(x)dx<0; - aòbg(x)dx : m£aòbf(x)g(x)dx/aòbg(x)dx£M;
m=aòbf(x)g(x)dx/aòbg(x)dx Þ aòbf(x)g(x)dx=maòbg(x)dx {}
- y=f(x) [a,b]
xÎ[a,b] , aòbf(x)g(x)dx=f(x)×aòbg(x)dx #49
- y=f(x) [a,b]Þ [a,x] a£x£b
- ò Þ F(x)= aòxf(t)dt, xÎ[a,b]
- F(x) {T1} - y=f(x)
[a,b], F()
[a,b]. {-} xÎ[a,b] x+DxÎ[a,b] : DF=F(x+Dx)-F(x)= aòx+Dxf(t)dt-aòxf(t)dt; .. - y=f(x)
[a,b] Þ$ C>0. |f(x)|£Ѡ "xÎ[a,b]Þ|DF|=|xòx+Dxf(t)dt|£×| xòx+Dxdt|=|Dx|
ÞlimDx0DF=0
- . ... {T2}
y=f(x) [a,b]
x0 Î[a,b] Þ F(x)= aòxf(t)dt (.) 0Î[a,b] F(x0)=f(x0) {-}
x0+DxÎ[a,b] DF=F(x0+Dx)-F(x0)= aòx+Dxf(t)dt- aòx0f(t)dt= aòx0f(t)dt+ x0òx+Dxf(t)dt- aòx0f(t)dt= xòx0+Dxf(t)dt |DF/Dt-f(x0)|=|1/Dx|, x0òx0+Dxf(t)dt-f(x0)/Dx=|1/Dx
× x0òx0+Dx (F(t)-f(x0))dt|£1/|Dx|×| x0òx0+Dxf(t)-f(x0)dt ..
- f(x) 0 E>0 $
dt>0 ||x-x0| 50
- - aòbf(x)dx=(b)-()=()|b
(1) {T} ( ) - y=f(x)
[a,b] ()-
. Þ (1) {-} F(x)= aòxf(t)dt - F(x) (x)
f(x) [a,b] $
F(x)=()+; aòxf(t)dt=()+ x=a aòf(t)dt=0 Þ 0=()+Þ =-()Þ aòxf(t)dt=()-()
x=b (1)
... #51{
} 1)f(x) [a,b]; 2)x=j(t)
[a,b]; 3) j(a)=a ,j(b)=b ;4)"tÎ[a;b]
j(t)Î[a,b]; aòbf(x)dx = aòbf(j(t))×j(t)dt {-}
[a,b]
- f(j(t)); F(x)-
f(x) [a,b] F(j(t)),
- f(j(t))×j(t) [a,b] -
aòbj(x)dx = aòbj(j(t))×j(t)dt
Þ .
- : aòbf(x)dx =F(b)-F(a); aòbf(j(t))×j(t)dt =F(j(b))-F(j(a))=F(b)-F(a)= aòbf(x)dx ...
{ } u(x) v(x)
[a,b] aòbu(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v(x)dx {-} u(x)v(x) [a,b]
(u(x)v(x))=u(x)v(x)+u(x)v(x)
- u(x)v(x)|ab= aòb (u(x)×v(x)+u(x)×v(x))dx= aòbu(x)×v(x)dx+ aòbu(x)×v(x)dx Þ aòbu(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v(x)dx #52(
)
R;
R - .;
, R,
. A-òA B-òB ; d-
, d0 òA òB
, - ,
ò; - f(x) [a,b] f(x)³0 "xÎ[a;b]
x=a, x=b. t={xi}i=0i=it- [a,b]; git={(x,y), xÎ[xi-1,xi], 0£y£mi=inff(x)} Git={(x,y), xÎ[xi-1,xi], 0£y£Mi=supf(x)}; Sgt=åi=1itmiDxi; SGt=åi=1itMiDxi {T}
, - f(x) [a,b]
. : lim|t|0(Sgt-SGt)=0 {} .. - f(x)
[a,b] . Þ lim|t|0SGt= lim|t|0Sgt=S= aòbf(x)dx
{} r=f(j),
f(j) [a,b]
f(j)³0 "jÎ[a,b] {} t-
git={(j,r), jÎ[ji-1,ji], 0£r£mi=inff(j)}
Git={(j,r), jÎ[ji-1,ji], 0£r£Mi=supf(j)}
.. - f(x)- [a,b]
Þ git=m²iDj/2 Git=M²iDj/2; Sgt=1/2×åi=1itm²iDj SGt=1/2×åi=1itM²iDj Þ lim|t|0SGt= lim|t|0Sgt=S=1/2× aòtf²(j)djÞ P-
Sp=1/2× aòbf²(j)dj. #53
y=f(x) [a,+¥) " [a;b] Þ
[a,+¥) - f(x)
aò+¥f(x)dx=limb+¥ aòbf(x)dx.
, aò+¥f(x)dx ,
, . {} Î[a,+¥) Þ aòbf(x)dx= aòcf(x)dx+ còbf(x)dx {} - aò+¥f(x)dx c Û limb+¥ aòbf(x)dx {} (2) ,
: E > 0 b0 < b0 < b, , |F(b)-F(b)
b' b", b0 < b' < b" < b. F(b)-F(b)=bòbf(x)dx Þ . {O}
(a;b] - f(x)
aòbf(x)dx= limxa+0
aòbf(x)dx.
ò ,
. {} aòf(x)dx òbf(x)dx a #55aòbf(x)dx- . aòb |f(x)|dx aòbf(x)dx- , aòb |f(x)| dx
aòbf(x)dx-
. {}
. , aòb |f(x)| dx
, E>0 (, b)
b0 , b0 < b' < b" < b, E>
bòb |f(x)| dx³| bòb
f(x)dx . . aòbf(x)dx . |aòbf(x)dx|£ aòb
|f(x)| dx
b'b
aòb f(x)dx |aòb f(x)dx|£ aòb |f(x)| dx {
ò} - y=f(x)
.
-¥ò+¥f(x)dx
v.p. ¥ò+¥f(x)dx=limh+¥ -hò+hf(x)dx;
¥ò+¥ .
. - f(x)
. [a,c-E],[c+E,b], E>0 . . . ò v.p. aòbf(x)dx=limE0 (aòC-Ef(x)dx +C+Eòbf(x)dx) #56 {
} f(x) ,
[1;+¥) å(n=1,+¥)f(n) 1ò+¥f(x)dx
{-} .. -
[1,+¥)
[1,h]Ì[1,+¥) Þ .. - [1,+¥) =1,2,3 f(k)>=f(x)>=f(k+1),
k<=x<=k+1 Þ kòk+1f(x)dx>=kòk+1f(k+1)dx Þ f(k)>= kòk+1f(x)dx>=f(k+1) Þ å(k=1,n)f(k){=Sn}>=å(k=1,n){= 1òn+1f(x)dx} kòk+1f(x)dx>=å(k=1,n)f(k+1){=Sn+1-f(1); Sn>= 1òn+1f(x)dx>=Sn+1-f(1) ;
1ò+¥f(x)dx Þ $M>0 | "hÎ[1;+¥) 1òhf(x)dx<=M
Þ Sn+1-f(1)<= 1òn+1f(x)dx<=M
Þ Sn+1<=M+f(1) "n; - Þ ; , n=1,2,3
1òn+1f(x)dx<=Sn<=M
"n .. hÎ[1,+¥) $n
Î N | h<=n
1ònf(x)dx<= 1òhf(x)dx+ hòn+1f(x)dx=
1òn+1f(x)dx<=M ..
1 h f(x)dx , 1ò+¥f(x)dx-. 1.
n- Rn. .
. Rn. 2. . ,
, . 3. .
.
. 4.
.
,
. . 5.
. . .
( }
f(), .
. 6. .
. . 7.
. 8. . .
. 9. .
. .
- . 10.
. . 11.
. 12.
. 13.
. 14.
. , .
. .
15.
. 16.
.
. 17.
. 18.
.
. 19.
. .
. 20.
. 21.
. .
. 22.
.
. 23.
, . 24.
. 25.
. 26.
. . 27.
. . 28.
. 29.
. . 30.
. .
31.
. .
32.
. 33. . 34.
. 35.
.
36.
. 37.
. . 38.
. 39. . 40.
. 41.
. 42.
. . 43.
. . 44.
. 45.
. 46. .
47.
, 48. . 49.
. . 50. -
51.
. 52.
. 53. .
. 54.
. . 55.
. . 56.
. xaf(x)=A Þ 1=d
$ s2kÞ .
Copyright (c) 2025 Stud-Baza.ru , , , .