,,,
()
2003
1(85.). D=(AC-AB),
= 1 0 ,C= 3 4 4 , B= -3 1 4 .
2 -2 1 -3 5 2 -3 4
( D.)
:
, .. .
*= 1 0 * 3 4 4 = 1*3+0*1 1*4+0*(-3) 1*4+0*5 = 3 4 4
2 -2 1 -3 5 2*3+(-2)*1 2*4-2*(-3) 2*4-2*5 4 14 -2
*= 1 0 * -3 1 4 = 1*(-3)+0*2 1*1+0*(-3) 1*4+0*4 = -3 1 4
2 -2 2 -3 4 2*(-3)-2*2 2*1-2*(-3) 2*4-2*4 -10 8 0
D=*-*= 3 4 4 _ -3 1 4 = 3-(-3) 4-1 4-4 = 6 3 0
4 14 -2 -10 8 0 4-(-10) 14-8 -2-0 14 6 -2
:14 , 6 , -2.
2(3). D= 2 2 1 0
1 1 1 0
1 2 2 1
0 3 2 2
:
2 2 1 0
1 1 1 0
1 2 2 1 =
0 3 2 2
(-2) ,
:
2 2 1 0
1 1 1 0
= 1 2 2 1 =
-2 -1 -2 0
:
3+4 2 2 1
= 1*(-1) * 1 1 1 =
-2 -1 -2
(-2) , . 2 , .
0 0 -1
= - 1 1 1 = - (-1) 1+3 * (-1) * 1 1 = 1-0 =1;
0 1 0 0 1
: D = 1.
3(598.7).
1 2 1 1 1 -1
X* 4 3 -2 = 16* -1 2 3
-5 -4 -1 0 -1 -2 .
:
A*X=B , X=A-1 *B
det A:
1 2 1
det A= 4 3 -2 = 1*3*(-1)+1*4*(-4)+2*(-2)*(-5)-1*3*(-5)-2*4*(-1)-1*(-2)*(-4)=
-5 -4 -1
=-19+20+15-8+8=16 ;
det= 16 ≠ 0;
-1 , :
1 1 = 3 -2 = -3 8 = -11
-4 -1
12 = - 4 -2 = -(-4-10) = 14
-5 -1
13 = 4 3 = -16+15 = -1
-5 -4
A21 = - 2 1 = -(-2+4) = -2
-4 -1
A22 = 1 1 = -1+5 = 4
-5 -1
A23 = - 1 2 = - (-4+10) = -6
-5 -4
A31 = 2 1 = - 4-3 = -7
3 -2
A32 = - 1 1 = - (-2-4) = 6
2
A33 = 1 2 = 3 8 = -5
4 3
-11/16 -2/16 -7/16
-1 = 14/16 4/16 6/16
-1/16 -6/16 -5/16
-11/16 -2/16 -7/16 1*16 1*16 -1*16
ՠ = 14/16 4/16 6/16 * -1*16 2*16 3*16 =
-1/16 -6/16 -5/16 0*16 -1*16 2*16
-11*1+(-2*(-1))+(-7*0) -11*1+(-2*2)+(-7*(-1)) -11*(-1)+(-2*3)+(-7*2)
= 14*1+4*(-1)+6*0 14*1+4*2+6*(-1) 14*(-1)+4*3+6*2 =
-1*1+(-6*(-1))+(-5*0) -1*1+(-6*2)+(-5*(-1)) -1*(-1)+(-6*3)+(-5*2)
-9 -8 -9
= 10 16 10
5 -8 -27
: = : -9 , -8 , -9 : 10 , 16 , 10 : 5 , -8 , -27 .
4(45). p , ,
1 2 -2 1
= 2 -3 3 2
1 -1 1 2
8 -7 p 11
?
:
det A:
1 2 -2 1 1 2 -2 1 -7 7 0 -7 7 0
det A = 2 -3 3 2 = 0 -7 7 0 = 3 -3 -1 = 3 -3 -1 =
1 -1 1 2 0 3 -3 -1 23 -16-p -3 14 -7-p 0
8 -7 p 11 0 23 -16-p -3
-1*(-1) 2+3 * -7 7 = 49 + 7p 98 = 7p - 49
14 -7-p
det A=0 , , .. 7p 49 = 0 , p = 7.
.
λ1 λ2 , λ3 , (8,-7,7,11) = λ1(1,2,-2,1)+ + λ2 (2,-3,3,2) + λ3 (1,-1,1,2);
: λ1 + 2λ2 + λ3 = 8 * 2
2λ1- 3λ2 - λ3 = -7
-2λ1 + 3λ2 + λ3 = 7
λ1 + 2λ2 + 2λ3 = 11
:
λ1 + 2λ2 + λ3 = 8 1) λ3 = 3
7λ2 + 3λ3 = 23 2) 7λ2 + 9 = 23
7λ2 + 3λ3 = 23 7λ2 = 14
λ3 = 3 λ2 = 2
3) λ1 + 2*2 + 3 =8
λ1 = 1
λ1 = 1 ; λ2 = 2 ; λ3 = 3 ;
: (8,-7,7,11) = 1(1,2,-2,1)+ 2(2,-3,3,2) + 3(1,-1,1,2) .
5. R3 f1(1,1,1) , f2 (1,2,3) , f3 (1,3,6), x(4,7,10). , f1, f2 , f3 R3 . (0.) . x fi .
1 1 1 1 1 1
∆ = 1 2 3 = 0 1 2 = 1*(-1)1+1 * 1 2 = 5 4 = 1
1 3 6 0 2 5 2 5
∆ ≠ 0 , f1, f2 , f3 R3
x :
1 + 2 + 3 = 4 *(-1)
1 + 22 + 33 = 7
1 + 32 + 63 = 10
1 + 2 + 3 = 4
2 + 23 = 3 *(-2)
22 + 53 = 6
1 + 2 + 3 = 4 1) 3 = 0 3) 1 + 3 + 0 = 4
2 + 23 = 3 2) 2 + 0 = 3 1 = 4 - 3
3 = 0 2 = 0 1 = 1
1 = 1 , 2 = 0 , 3 = 0 .
x f1, f2 , f3
x(1;3;0);
x = f1 + 3f2 + 0f3;
x = f1 + 3f2 .
: x (1;3;0).
6. ,
21 + 22 + 3 = 8,
1 + 2 + 3 = 3,
1 + 22 + 23 + 4 = 3,
32 + 23 +24 = 3
. (362). 2 . (01.) . .
:
2 2 1 0
= 1 1 1 0
1 2 2 1
0 3 2 2
2 2 1 0 2 2 1 0 2 2 1 1 1 0
∆ = 1 1 1 0 = 1 1 1 0 = (-1)3+4 * 1 1 1 = - 1 1 1 =
1 2 2 1 1 2 2 1 -2 -1 -2 0 1 0
0 3 2 2 -2 -1 -2 0
= - (-1)2+3 * 1 1 = 1
0 1
∆ ≠ 0, 2 = ∆ 2 /∆
2 8 1 0 2 8 1 0 2 8 1 2 8 1
∆ 2 = 1 3 1 0 = 1 3 1 0 = (-1)3+4 * 1 3 1 = - 1 5 0 =
1 3 2 1 1 3 2 1 -2 -3 -2 0 3 0
0 3 2 2 -2 -3 -2 0
= -(-1)1+3 * 1 5 = ( 3 + 0 ) = 3
0 8
2 = 3 /1 = 3.
21 + 22 + 3 = 8 *(-2) *(-1)
1 + 2 + 3 = 3
1 + 22 + 23 + 4 = 3
32 + 23 +24 = 3
1 + 2 + 3 = 3
- 3 = 2
2 + 3 + 4 = 0 *(-3)
32 + 23 +24 = 3
1 + 2 + 3 = 3
2 + 3 + 4 = 0
- 3 - 4 = 3
3 = -2
1) 3 = - 2 3) 2 - 2 - 1 = 0
2) 2 - 4 = 3 2 = 3
4 = -1 4) 1 + 3 - 2 = 3
1 = 2
:
2 + 3 2 =3, 3 = 3
4 + 3*3 2 = 8, 8 = 8
2 + 6 4 2 = 3, 3 =3
9 4 2 = 3 , 3 = 3.
: 1 = 2 , 2 = 3 , 3 = - 2 , 4 = -1.
7.
31 + 2 - 3 - 4 = 2,
91 + 2 - 23 - 4 = 7,
1 - 2 - 4 = -1,
1 + 2 - 3 -34 = -2.
, . . (392.). , 4 = 1 .
:
,
.
:
3 1 -1 -1 2 0 -2 2 8 8 0 0 1 6 7
= 9 1 -2 -1 7 → 0 -8 7 26 25 → 0 0 3 18 21 =0
1 -1 0 -1 -1 0 -2 1 2 1 0 -2 1 2 1
1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2
= 0. 3 .
:
:
1 + 2 - 3 -34 = -2
31 + 2 - 3 - 4 = 2
91 + 2 - 23 - 4 = 7
1 - 2 - 4 = -1
1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2
= 3 1 -1 -1 2 → 0 2 -2 -8 -8 → 0 2 -2 -8 -8 →
9 1 -2 -1 7 0 8 -7 -26 -25 0 0 -1 -6 -7
1 -1 0 -1 -1 0 2 -1 -2 -1 0 0 -1 -6 -7
1 + 2 - 3 -34 = -2
→ 22- 23 -84 = -8
- 3 -64 = -7.
1) 3 = 7 - 64
2) 2 - 3 -44 = -4
2 = 3 + 44 - 4
2 = 7 - 64 + 44 - 4
2 = 3 - 24
3) 1 = - 2 + 3 + 34 - 2
1 = - 3 + 24 + 7 - 64 + 34 2
1 = 2 -4 .
:
1 = 2 -4
2 = 3 - 24
3 = 7 - 64.
, 4 = 1
1 = 2 1 = 1;
2 = 3 2*1 = 1;
3 = 7 6*1 =1.
: (1;1;1;1) .
8.
21 +32 - 3 - 4 + 5 = 0,
31 - 22 - 33 -35 = 0,
1 - 32 + 23 -54 -25 = 0.
, . . - :
, . , .
.
:
2 3 -1 -1 1 1 -3 2 -5 -2
= 3 -2 3 0 -3 → 0 9 -5 9 5 │*7 →
1 -3 2 -5 -2 0 7 -3 15 3 │*(-9)
1 -3 2 -5 -2
→ 0 9 -5 9 5
0 0 -8 -72 8
1 -32 + 23 - 54 -25 = 0
92 - 53 + 94 +55 = 0
-83 -724 +85 = 0
1) 83 = -724 + 85
3 = - 94 + 5
2) 92 + 454 - 55 + 94 +55 = 0
92 + 364 = 0
2= - 44
3) 1 +124 - 184 + 2 5 - 54 -25 = 0
1 - 114 = 0
1 =114
:
1 =114
2= - 44
3 = - 94 + 5
, 4 = 1 , 5 = 0.
1 =11*1 = 11,
2= - 4*1 = -4,
3 = - 9*1 + 0 = -9.
4 = 0, 5 = 1.
1 =11*0 = 0,
2= - 4*0 = 0,
3 = - 9*0 + 1 = 1.
: (11;-4;-9;1;0)
(0; 0; 1; 0; 1).
9 (3). , = 2 + 3r, b = p 2r , | p | = √2 , | r | = 3, (p,^r) = 45 .
:
S =| [ , b] | = | [2 + 3r , p 2r] | = | 2[p , p] - 4[p, r ] + 3[r , p] -6[r , r] |
[p , p] = 0 , [r , r] = 0 , [r , p] = - [p, r ] .
S = | 7[r , p] | = 7| r | * | p | * sinφ
S = 7 * 3 * √2 * sin 45 = 21 * √2 * √2 / 2 =21 .
:S =21 .
10 (78). BD[BC ,CD] , B(6,3,3) ; C(6,4,2) ; D(4,1,4) .
:
BD = ( 4 6 , 1 3 , 4 3 ) = ( - 2 ; - 2 ; 1 ),
BC = ( 6 6 , 4 3 , 2 3 ) = ( 0 ; 1 ; - 1 ),
CD = ( 4 6 , 1 4 , 4 2 ) = ( - 2 ; - 3 ; 2 ).
:
i j k
[BC ,CD] = 0 1 -1 = i (2 3) j (0 2) + k (0 + 2) = - i + 2j + 2k .
-2 -3 2
[BC ,CD] = , = ( -1 ; 2 ; 2 )
BD = ( BD , a ) /| BD |
( BD , a ) = -2*( -1 ) 2*2 + 1*2 = 2 4 + 2 = 0 .
BD = 0 .
: BD = 0 .
11. R3 → R3 Ax = (- 1 + 22 + x3 , 52 , 31 + 22 + 3 ), ( 1, 2, 3 ) .(125.). . , (1,0 ,3) .(56). λ0 , . (25.). , λ0 . .
:
Ax = (- 1 + 22 + x3 ; 52 ; 31 + 22 + 3 )
l1 , l2 , l3
A l1 = (-1 ; 2 ;1)
A l2 = (0 ; 5 ; 0)
A l3 = (3 ; 2 ; 1)
-1 2 1
A = 0 5 0
3 2 1 .
, = (1 ,0 ,3) .
-1 2 1 1 -1 + 0 + 3 2 1
A = 0 5 0 * 0 = 0 + 0 + 0 = 0 = 2 * 0
3 2 1 3 3 + 0 + 3 6 3 .
, = (1 ,0 ,3) λ = 2 .
:
-1 λ 2 1
0 5 λ 0 = 0
3 2 1 λ
(5 λ)*((-1 λ)*(1 λ) 3) = 0
5 λ = 0 蠠 λ2 1 3 = 0
λ2 = 4
λ = 2
λ1 = 2 , λ2 = -2 , λ3 = 5 .
1 + 22 + 3 = 0 2 = 0
72 = 0
31 + 22 + 33 = 0
1 + 3 = 0 1 = -3
31 + 33 = 0
3 = 1 , 1 = -1 , 1 = (-1 ;0 ;1) .
:
-1 2 1 -1 1 + 0 + 1 2 -1
A = 0 5 0 * 0 = 0 + 0 + 0 = 0 = -2 * 0
3 2 1 1 -3 + 0 + 1 -2 1
, 1 = (-1 ;0 ;1) λ = -2.
-61 + 22 + 3 = 0
31 + 22 - 43 = 0
-91 + 53 = 0
1 = 5/9 3
-6*(5/9 3) + 22 + 3 = 0
-10/3 3 + 3 + 22 = 0
22 = 7/3 3
2 = 7/6 3 .
3 = 18 , 1 = 10 , 2 = 21 .
2 = (10 ;21 ;18) .
-1 2 1 10 -10 + 42 + 18 50 10
A = 0 5 0 * 21 = 0 + 105 + 0 = 105 = 5 * 21
3 2 1 18 30 + 42 + 18 90 18 .
: : -1 , 2 , 1 : 0 , 5 , 0 : 3 , 2 , 1; = (1 ,0 ,3) λ = 2 , 1 = (-1 ;0 ;1) λ = -2 , 2 = (10 ;21 ;18) λ = 5 .
:
2 + 3y + 5 = 0.
3y = -2x 5
y = -2/3 x 5/3
κ = -2/3
, κ = -2/3 .
κ (0,y0)
y y0 = κ(x x0).
y 4 = -2/3 (x 1)
3y 12 = -2x + 2
2 + 3y - 14 = 0.
: 2 + 3y - 14 = 0 .
13(32.). (3,6) + 2y 10 = 0.
:
N ̠ .
MN + 2y 10 = 0 κ1 = -1/2 , MN κ2 = 2 .
MN y y0 = 2(x x0) .
N 頠
+ 2y 10 = 0
y y0 = 2(x x0) , x0 = 3 , y0 = 6 .
+ 2y 10 = 0 2 + 4y 20 = 0
y 6 = 2(x 3) -2 + y = 0
4y = 20
y = 4
2 = y
= ½ y
= ½ * 4 = 2
= 2 .
: (3,6) + 2y 10 = 0 N(2,4).
14(103.). , 蠠 M1(-6,1,-5) , M2(7,-2,-1) , M3(10,-7,1) .
:
, 3
x-x1 y-y1 z-z1
x2-x1 y2-y1 z2-z1 = 0
x3-x1 y3-y1 z3-z1
x-6 y-1 z+5
7+6 -2-1 -1+5 = 0
10+6 -7-1 1-5
x-6 y-1 z+5
13 -3 4 = 0
16 -8 -4
(x 6)* -3 4 - (y 1)* 13 4 + (z + 5)* 13 -3 = (x 6)*(12+32) (y 1)*(-52-64)+
-8 -4 16 -4 16 -8
+ (z + 5)*(-104+48) = 0
(x 6)*44 - (y 1)*(-116) + (z + 5)*(-56) = 0
11*(x 6) + 29*(y 1) 14*(z + 5) = 0
11x 66 + 29y 29 14z 70 = 0
11x + 29y 14z 165 = 0 .
: 11x + 29y 14z 165 = 0 .
15. 4x2 y2 24x + 4y + 28 = 0 .
8.1. , .
8.2 (325.7). .
8.3 (06.). .
8.4 (267.). .
8.5. .
:
4(x2 6x + 9) 36 (y2 4y + 4) + 4 + 28 = 0
4(x 3)2 (y 2)2 4 = 0
4(x 3)2 (y 2)2 = 4
((x 3)2/1) ((y 2)2/4) = 1
x1 = x 3 , y1 = y 2 , x12/1 y12/4 =1 .
.
x1 = x 3 = 0 , x = 3
y1 = y 2 = 0 , y = 2
(3 ; 2) - .
a =1 .
b =2 .
y1 = b/a x1
(y 2) = ( 2/1)*(x 3)
y 2 = 2x 6 蠠 y 2 = -2(x 8)
2x y 4 = 0 2x + 2y 8 = 0
x + y 4 = 0 .
F1(-c ; 0) , F2(c ; 0)
c2 = a2 + b2 ; c2 = 1 + 4 = 5
c = √5
F1(-√5; 0) , F2(√5 ; 0).
F1′(3 - √5; 2) , F2′ (3 + √5; 2).
F1′ F2′ (x 3 + √5) / (3 + √5 3 + √5) = (y 2) /(2 2) ; y = 2
: (3 ; 2) , a =1 , b =2, (x 3 + √5) / (3 + √5 3 + √5) = (y 2) /(2 2) ; y = 2 .
16. y2 + 6x + 6y + 15 = 0.
16.1. , .
16.2(058.). .
16.3(29). p .
16.4(289.). .
16.5. .
:
y
(y2 + 6y + 9) + 6x + 6 = 0
(y + 3)2 = - 6(x + 1) .
y1 = y + 3 , x1 = x + 1 .
y12 = 6x1 .
y2 = 2px , p = -3 .
.
p<0 , . y + 3 = 0 x + 1 = 0
y = -3 x = -1
(-1 ; -3) .
y = -3.
: (-1 ; -3) , p = -3 , y = -3 .
() 2003 1(85.
Copyright (c) 2024 Stud-Baza.ru , , , .