. , , ,

,,,

. —

()

 

 


2003


1(85.). D=(AC-AB),

= 1 0 ,C= 3 4 4 , B= -3 1 4 .

2 -2 1 -3 5 2 -3 4

( D.)

:

, .. .

*= 1 0 * 3 4 4 = 1*3+0*1 1*4+0*(-3) 1*4+0*5 = 3 4 4

2 -2 1 -3 5 2*3+(-2)*1 2*4-2*(-3) 2*4-2*5 4 14 -2

*= 1 0 * -3 1 4 = 1*(-3)+0*2 1*1+0*(-3) 1*4+0*4 = -3 1 4

2 -2 2 -3 4 2*(-3)-2*2 2*1-2*(-3) 2*4-2*4 -10 8 0


D=*-*= 3 4 4 _ -3 1 4 = 3-(-3) 4-1 4-4 = 6 3 0

4 14 -2 -10 8 0 4-(-10) 14-8 -2-0 14 6 -2

:14 , 6 , -2.

2(3). D= 2 2 1 0

1 1 1 0

1 2 2 1

0 3 2 2

:

2 2 1 0

1 1 1 0

1 2 2 1 =

0 3 2 2

(-2) ,

:

2 2 1 0

1 1 1 0

= 1 2 2 1 =

-2 -1 -2 0

:

3+4 2 2 1

= 1*(-1) * 1 1 1 =

-2 -1 -2

(-2) , . 2 , .

0 0 -1

= - 1 1 1 = - (-1) 1+3 * (-1) * 1 1 = 1-0 =1;

0 1 0 0 1

: D = 1.

3(598.7).

1 2 1 1 1 -1

X* 4 3 -2 = 16* -1 2 3

-5 -4 -1 0 -1 -2 .

:

A*X=B , X=A-1 *B

det A:

1 2 1

det A= 4 3 -2 = 1*3*(-1)+1*4*(-4)+2*(-2)*(-5)-1*3*(-5)-2*4*(-1)-1*(-2)*(-4)=

-5 -4 -1

=-19+20+15-8+8=16 ;

det= 16 ≠ 0;

-1 , :

1 1 = 3 -2 = -3 8 = -11

-4 -1

12 = - 4 -2 = -(-4-10) = 14

-5 -1

13 = 4 3 = -16+15 = -1

-5 -4

A21 = - 2 1 = -(-2+4) = -2

-4 -1

A22 = 1 1 = -1+5 = 4

-5 -1

A23 = - 1 2 = - (-4+10) = -6

-5 -4

A31 = 2 1 = - 4-3 = -7

3 -2

A32 = - 1 1 = - (-2-4) = 6

2

A33 = 1 2 = 3 8 = -5

4 3

-11/16 -2/16 -7/16

-1 = 14/16 4/16 6/16

-1/16 -6/16 -5/16


-11/16 -2/16 -7/16 1*16 1*16 -1*16

ՠ = 14/16 4/16 6/16 * -1*16 2*16 3*16 =

-1/16 -6/16 -5/16 0*16 -1*16 2*16


-11*1+(-2*(-1))+(-7*0) -11*1+(-2*2)+(-7*(-1)) -11*(-1)+(-2*3)+(-7*2)

= 14*1+4*(-1)+6*0 14*1+4*2+6*(-1) 14*(-1)+4*3+6*2 =

-1*1+(-6*(-1))+(-5*0) -1*1+(-6*2)+(-5*(-1)) -1*(-1)+(-6*3)+(-5*2)

-9 -8 -9

= 10 16 10

5 -8 -27

: = : -9 , -8 , -9 : 10 , 16 , 10 : 5 , -8 , -27 .

4(45). p , ,

1 2 -2 1

= 2 -3 3 2

1 -1 1 2

8 -7 p 11

?

:

det A:

1 2 -2 1 1 2 -2 1 -7 7 0 -7 7 0

det A = 2 -3 3 2 = 0 -7 7 0 = 3 -3 -1 = 3 -3 -1 =

1 -1 1 2 0 3 -3 -1 23 -16-p -3 14 -7-p 0

8 -7 p 11 0 23 -16-p -3

-1*(-1) 2+3 * -7 7 = 49 + 7p 98 = 7p - 49

14 -7-p

det A=0 , , .. 7p 49 = 0 , p = 7.

.

λ1 λ2 , λ3 , (8,-7,7,11) = λ1(1,2,-2,1)+ + λ2 (2,-3,3,2) + λ3 (1,-1,1,2);

: λ1 + 2λ2 + λ3 = 8 * 2

1- 3λ2 - λ3 = -7

-2λ1 + 3λ2 + λ3 = 7

λ1 + 2λ2 + 2λ3 = 11

:

λ1 + 2λ2 + λ3 = 8 1) λ3 = 3

2 + 3λ3 = 23 2) 7λ2 + 9 = 23

2 + 3λ3 = 23 7λ2 = 14

λ3 = 3 λ2 = 2

3) λ1 + 2*2 + 3 =8

λ1 = 1

λ1 = 1 ; λ2 = 2 ; λ3 = 3 ;

: (8,-7,7,11) = 1(1,2,-2,1)+ 2(2,-3,3,2) + 3(1,-1,1,2) .

5. R3 f1(1,1,1) , f2 (1,2,3) , f3 (1,3,6), x(4,7,10). , f1, f2 , f3 R3 . (0.) . x fi .

f1, f2 , f3 :

1 1 1 1 1 1

∆ = 1 2 3 = 0 1 2 = 1*(-1)1+1 * 1 2 = 5 4 = 1

1 3 6 0 2 5 2 5

∆ ≠ 0 , f1, f2 , f3 R3

x :

1 + 2 + 3 = 4 *(-1)

1 + 22 + 33 = 7

1 + 32 + 63 = 10

1 + 2 + 3 = 4

2 + 23 = 3 *(-2)

22 + 53 = 6

1 + 2 + 3 = 4 1) 3 = 0 3) 1 + 3 + 0 = 4

2 + 23 = 3 2) 2 + 0 = 3 1 = 4 - 3

3 = 0 2 = 0 1 = 1

1 = 1 , 2 = 0 , 3 = 0 .

x f1, f2 , f3

x(1;3;0);

x = f1 + 3f2 + 0f3;

x = f1 + 3f2 .

: x (1;3;0).

6. ,

21 + 22 + 3 = 8,

1 + 2 + 3 = 3,

1 + 22 + 23 + 4 = 3,

32 + 23 +24 = 3

. (362). 2 . (01.) . .

:

2 2 1 0

= 1 1 1 0

1 2 2 1

0 3 2 2

2 2 1 0 2 2 1 0 2 2 1 1 1 0

∆ = 1 1 1 0 = 1 1 1 0 = (-1)3+4 * 1 1 1 = - 1 1 1 =

1 2 2 1 1 2 2 1 -2 -1 -2 0 1 0

0 3 2 2 -2 -1 -2 0

= - (-1)2+3 * 1 1 = 1

0 1

∆ ≠ 0, 2 = ∆ 2 /∆

2 8 1 0 2 8 1 0 2 8 1 2 8 1

2 = 1 3 1 0 = 1 3 1 0 = (-1)3+4 * 1 3 1 = - 1 5 0 =

1 3 2 1 1 3 2 1 -2 -3 -2 0 3 0

0 3 2 2 -2 -3 -2 0

= -(-1)1+3 * 1 5 = ( 3 + 0 ) = 3

0 8

2 = 3 /1 = 3.

21 + 22 + 3 = 8 *(-2) *(-1)

1 + 2 + 3 = 3

1 + 22 + 23 + 4 = 3

32 + 23 +24 = 3

1 + 2 + 3 = 3

- 3 = 2

2 + 3 + 4 = 0 *(-3)

32 + 23 +24 = 3

1 + 2 + 3 = 3

2 + 3 + 4 = 0

- 3 - 4 = 3

3 = -2

1) 3 = - 2 3) 2 - 2 - 1 = 0

2) 2 - 4 = 3 2 = 3

4 = -1 4) 1 + 3 - 2 = 3

1 = 2

:

2 + 3 2 =3, 3 = 3

4 + 3*3 2 = 8, 8 = 8

2 + 6 4 2 = 3, 3 =3

9 4 2 = 3 , 3 = 3.

: 1 = 2 , 2 = 3 , 3 = - 2 , 4 = -1.

7.

31 + 2 - 3 - 4 = 2,

91 + 2 - 23 - 4 = 7,

1 - 2 - 4 = -1,

1 + 2 - 3 -34 = -2.

, . . (392.). , 4 = 1 .

:

,

.

:

3 1 -1 -1 2 0 -2 2 8 8 0 0 1 6 7

= 9 1 -2 -1 7 → 0 -8 7 26 25 → 0 0 3 18 21 =0

1 -1 0 -1 -1 0 -2 1 2 1 0 -2 1 2 1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

= 0. 3 .

:

:

1 + 2 - 3 -34 = -2

31 + 2 - 3 - 4 = 2

91 + 2 - 23 - 4 = 7

1 - 2 - 4 = -1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

= 3 1 -1 -1 2 → 0 2 -2 -8 -8 → 0 2 -2 -8 -8 →

9 1 -2 -1 7 0 8 -7 -26 -25 0 0 -1 -6 -7

1 -1 0 -1 -1 0 2 -1 -2 -1 0 0 -1 -6 -7

1 + 2 - 3 -34 = -2

→ 22- 23 -84 = -8

- 3 -64 = -7.

1) 3 = 7 - 64

2) 2 - 3 -44 = -4

2 = 3 + 44 - 4

2 = 7 - 64 + 44 - 4

2 = 3 - 24

3) 1 = - 2 + 3 + 34 - 2

1 = - 3 + 24 + 7 - 64 + 34 2

1 = 2 -4 .

:

1 = 2 -4

2 = 3 - 24

3 = 7 - 64.

, 4 = 1

1 = 2 1 = 1;

2 = 3 2*1 = 1;

3 = 7 6*1 =1.

: (1;1;1;1) .

8.

21 +32 - 3 - 4 + 5 = 0,

31 - 22 - 33 -35 = 0,

1 - 32 + 23 -54 -25 = 0.

, . . - :

, . , .

.

:

2 3 -1 -1 1 1 -3 2 -5 -2

= 3 -2 3 0 -3 → 0 9 -5 9 5 │*7 →

1 -3 2 -5 -2 0 7 -3 15 3 │*(-9)

1 -3 2 -5 -2

→ 0 9 -5 9 5

0 0 -8 -72 8

1 -32 + 23 - 54 -25 = 0

92 - 53 + 94 +55 = 0

-83 -724 +85 = 0

1) 83 = -724 + 85

3 = - 94 + 5

2) 92 + 454 - 55 + 94 +55 = 0

92 + 364 = 0

2= - 44

3) 1 +124 - 184 + 2 5 - 54 -25 = 0

1 - 114 = 0

1 =114

:

1 =114

2= - 44

3 = - 94 + 5

, 4 = 1 , 5 = 0.

1 =11*1 = 11,

2= - 4*1 = -4,

3 = - 9*1 + 0 = -9.

4 = 0, 5 = 1.

1 =11*0 = 0,

2= - 4*0 = 0,

3 = - 9*0 + 1 = 1.

: (11;-4;-9;1;0)

(0; 0; 1; 0; 1).

9 (3). , = 2 + 3r, b = p 2r , | p | = √2 , | r | = 3, (p,^r) = 45 .

:

S =| [ , b] | = | [2 + 3r , p 2r] | = | 2[p , p] - 4[p, r ] + 3[r , p] -6[r , r] |

[p , p] = 0 , [r , r] = 0 , [r , p] = - [p, r ] .

S = | 7[r , p] | = 7| r | * | p | * sinφ

S = 7 * 3 * √2 * sin 45 = 21 * √2 * √2 / 2 =21 .

:S =21 .

10 (78). BD[BC ,CD] , B(6,3,3) ; C(6,4,2) ; D(4,1,4) .

:

BD = ( 4 6 , 1 3 , 4 3 ) = ( - 2 ; - 2 ; 1 ),

BC = ( 6 6 , 4 3 , 2 3 ) = ( 0 ; 1 ; - 1 ),

CD = ( 4 6 , 1 4 , 4 2 ) = ( - 2 ; - 3 ; 2 ).

:

i j k

[BC ,CD] = 0 1 -1 = i (2 3) j (0 2) + k (0 + 2) = - i + 2j + 2k .

-2 -3 2

[BC ,CD] = , = ( -1 ; 2 ; 2 )

BD = ( BD , a ) /| BD |

( BD , a ) = -2*( -1 ) 2*2 + 1*2 = 2 4 + 2 = 0 .

BD = 0 .

: BD = 0 .

11. R3 → R3 Ax = (- 1 + 22 + x3 , 52 , 31 + 22 + 3 ), ( 1, 2, 3 ) .(125.). . , (1,0 ,3) .(56). λ0 , . (25.). , λ0 . .

:

Ax = (- 1 + 22 + x3 ; 52 ; 31 + 22 + 3 )

l1 , l2 , l3

A l1 = (-1 ; 2 ;1)

A l2 = (0 ; 5 ; 0)

A l3 = (3 ; 2 ; 1)

-1 2 1

A = 0 5 0

3 2 1 .

, = (1 ,0 ,3) .

-1 2 1 1 -1 + 0 + 3 2 1

A = 0 5 0 * 0 = 0 + 0 + 0 = 0 = 2 * 0

3 2 1 3 3 + 0 + 3 6 3 .

, = (1 ,0 ,3) λ = 2 .

:

-1 λ 2 1

0 5 λ 0 = 0

3 2 1 λ

(5 λ)*((-1 λ)*(1 λ) 3) = 0

5 λ = 0 蠠 λ2 1 3 = 0

λ2 = 4

λ = 2

λ1 = 2 , λ2 = -2 , λ3 = 5 .

, λ = -2.

1 + 22 + 3 = 0 2 = 0

72 = 0

31 + 22 + 33 = 0

1 + 3 = 0 1 = -3

31 + 33 = 0

3 = 1 , 1 = -1 , 1 = (-1 ;0 ;1) .

:

-1 2 1 -1 1 + 0 + 1 2 -1

A = 0 5 0 * 0 = 0 + 0 + 0 = 0 = -2 * 0

3 2 1 1 -3 + 0 + 1 -2 1

, 1 = (-1 ;0 ;1) λ = -2.

λ = 5

-61 + 22 + 3 = 0

31 + 22 - 43 = 0

-91 + 53 = 0

1 = 5/9 3

-6*(5/9 3) + 22 + 3 = 0

-10/3 3 + 3 + 22 = 0

22 = 7/3 3

2 = 7/6 3 .

3 = 18 , 1 = 10 , 2 = 21 .

2 = (10 ;21 ;18) .

-1 2 1 10 -10 + 42 + 18 50 10

A = 0 5 0 * 21 = 0 + 105 + 0 = 105 = 5 * 21

3 2 1 18 30 + 42 + 18 90 18 .

, 2 = (10 ;21 ;18) λ = 5 .

: : -1 , 2 , 1 : 0 , 5 , 0 : 3 , 2 , 1; = (1 ,0 ,3) λ = 2 , 1 = (-1 ;0 ;1) λ = -2 , 2 = (10 ;21 ;18) λ = 5 .

12(01.). , (1,4) 2 + 3y + 5 = 0.

:

2 + 3y + 5 = 0.

3y = -2x 5

y = -2/3 x 5/3

κ = -2/3

, κ = -2/3 .

κ (0,y0)

y y0 = κ(x x0).

y 4 = -2/3 (x 1)

3y 12 = -2x + 2

2 + 3y - 14 = 0.

: 2 + 3y - 14 = 0 .

13(32.). (3,6) + 2y 10 = 0.

:

N ̠ .

MN + 2y 10 = 0 κ1 = -1/2 , MN κ2 = 2 .

MN y y0 = 2(x x0) .

N 頠

+ 2y 10 = 0

y y0 = 2(x x0) , x0 = 3 , y0 = 6 .

+ 2y 10 = 0 2 + 4y 20 = 0

y 6 = 2(x 3) -2 + y = 0

4y = 20

y = 4

2 = y

= ½ y

= ½ * 4 = 2

= 2 .


: (3,6) + 2y 10 = 0 N(2,4).

14(103.). , 蠠 M1(-6,1,-5) , M2(7,-2,-1) , M3(10,-7,1) .

:

, 3

x-x1 y-y1 z-z1

x2-x1 y2-y1 z2-z1 = 0

x3-x1 y3-y1 z3-z1

x-6 y-1 z+5

7+6 -2-1 -1+5 = 0

10+6 -7-1 1-5

x-6 y-1 z+5

13 -3 4 = 0

16 -8 -4

(x 6)* -3 4 - (y 1)* 13 4 + (z + 5)* 13 -3 = (x 6)*(12+32) (y 1)*(-52-64)+

-8 -4 16 -4 16 -8

+ (z + 5)*(-104+48) = 0

(x 6)*44 - (y 1)*(-116) + (z + 5)*(-56) = 0

11*(x 6) + 29*(y 1) 14*(z + 5) = 0

11x 66 + 29y 29 14z 70 = 0

11x + 29y 14z 165 = 0 .

: 11x + 29y 14z 165 = 0 .

15. 4x2 y2 24x + 4y + 28 = 0 .

8.1. , .

8.2 (325.7). .

8.3 (06.). .

8.4 (267.). .

8.5. .

:

4(x2 6x + 9) 36 (y2 4y + 4) + 4 + 28 = 0

4(x 3)2 (y 2)2 4 = 0

4(x 3)2 (y 2)2 = 4

((x 3)2/1) ((y 2)2/4) = 1

x1 = x 3 , y1 = y 2 , x12/1 y12/4 =1 .

.

x1 = x 3 = 0 , x = 3

y1 = y 2 = 0 , y = 2

(3 ; 2) - .

a =1 .

b =2 .

y1 = b/a x1

(y 2) = ( 2/1)*(x 3)

y 2 = 2x 6 蠠 y 2 = -2(x 8)

2x y 4 = 0 2x + 2y 8 = 0

x + y 4 = 0 .

F1(-c ; 0) , F2(c ; 0)

c2 = a2 + b2 ; c2 = 1 + 4 = 5

c = √5

F1(-√5; 0) , F2(√5 ; 0).

F1′(3 - √5; 2) , F2′ (3 + √5; 2).

F1′ F2′ (x 3 + √5) / (3 + √5 3 + √5) = (y 2) /(2 2) ; y = 2


: (3 ; 2) , a =1 , b =2, (x 3 + √5) / (3 + √5 3 + √5) = (y 2) /(2 2) ; y = 2 .

16. y2 + 6x + 6y + 15 = 0.

16.1. , .

16.2(058.). .

16.3(29). p .

16.4(289.). .

16.5. .

:

y

(y2 + 6y + 9) + 6x + 6 = 0

(y + 3)2 = - 6(x + 1) .

y1 = y + 3 , x1 = x + 1 .

y12 = 6x1 .

y2 = 2px , p = -3 .

.

p<0 , . y + 3 = 0 x + 1 = 0

y = -3 x = -1

(-1 ; -3) .

y = -3.



: (-1 ; -3) , p = -3 , y = -3 .

() 2003 1(85.

 

 

 

! , , , .
. , :