. , , ,

,,,

. ..




524 -


..-.,

. .

.-..,

..


.-1996 .

.


.
3

1.

7

2.

20

3.

24

4. ..

27

5. ,

30

6. . . . -

34

7.

44

8.

47
50

. , () .

“” .

:

  1. F(u) (-1  u +1) En [F;-1,+1] (n-1 )?

  2. f (x) En[f] (n-1 )?

u=cos(x) 1 2. , , 2.

,  N , ,  - - 0<<

.., . .- En[f] f. .. , , f En[f] . 1 ... , :

,

- .

:

 N


, k>, , k>

.

1 , .

2 . .

3 . , : f r- f (r) ,

, , .

1947 . .. [1]. :

3 :

(*)

4 .. [2] .. [3], [4] . (*). 5.

5 . tn , f {tn} f. f tn?

tn , f , : , , n. (fHk[], ).

, : , n.

: ,

.

6 “ ” .

:

.

, , r=[], =-r, f .

 .

.

, : 0<<k

.

.

[3] .. .

,

 N

, , , : k -

;

, ,

.

-.

7 . En[f] ,

.

,

=0 .. [3].

8 .

1. .

f 2 . tn(x) n, tn*(x)=tn*(x,f)- , f tn(x).

.

1. f,

8-- , , , . H Lip 

2. r W(r)L f, (r-1) r- L.

3. [a,b] f (x) f;, [0, b-a] :

(1.1)

, ,

(1.1’)

:

  1. 

  2.  , ;

  3.  ;

  4.  ,

(1.2)

. 1) .

2) , sup h. 4) , h=h1+h2, ,

(1.2) , ..

(1.3)

3). f (x) [a,b], , , ,

,  .

4. f (x) [a,b]. k h>0 , k- f x h

(1.4)

h>0 , k- -

(1.4’)

1. j k

(1.5)

. , k

.

2. k n :

(1.6)

. k. k=1 (1.6) :

.

k-1 (k2),

.

5. (b-a) f(x)Lq (Lq- [a,b] f(x)), k1

3.

(1.7)

. ,

. .

6. f(x) [a,b], k1

, k=1, .

:

  1. , ;

  2. ;

  3. n ( )

(1.8)

-

(1.8’)

5) f(x) [a,b] (r-1)- , (r-1)- ,

(1.9)

. 1) 1) ,

2) 2) , .

3) , ,

k() .

4) 2 1,

(1.8) . (1.8’) k(t) (1.8).

5) 1 3 1,

7. k- . , k- f,

- f k- h:

k=1 k=2. k=1 ; ; .

8. k. , - k- , :

  1. ,

  2. ,

  3. ,

, f 0, k- (. 5 2).

9. k k- . , f , 10>0 ,

Hk.

{fn} (n=1,2,...)

10 n, : n.

, k- .

10. >0 p , (p=-[-]). , ,

1) p-

2) : 11>0 ,

2) . N .

11. , , 12 13 , t, ,

.

.

12. n-

(1.10)

n

(1.10’)

13. n-

(1.11)

Fn(t) n , , (n-1).

(1.11’)

(1.11’’)

Dk(t)- .

14. n-

(1.12)

.

) n Jn(t) 2n-2

,

jk=jk(n) -

)

)

)

.

) , Fn(t)

jk(k=1,2,...,2n-2) - , ,

) .

) , j0.

) (**),

) )

.

15. n

, (1.13)

n=1,2,3,...,k-,

(1.13’)

:

)

) k n Jn,k(t)

k(n-1)

) n2k-1, .. 14>0 15>0, , n=1,2,3,...

) >0

)

.

)

) 1- , (1.11) (1.11‘’)

(1.14)

- .

) (**),

(1.15)

(1.15‘)

) (1.15‘)

) , , (1.15‘) (**)

(1.16)

A-const, , (1.15), (**) sintt, t0 (***),

(1.16‘)

A1-const. (1.16) (1.16‘) , .


2. .

. . f1, f2, ... - .

1. k 0

(2.1)

: ,

.

2. f l - , l 0

(2.2)

(2.3)

:

0l

l=0 ,

,

0<l<k

(2.3) l=1, ,

, k

. (2.4)

3. k k- .

:

, , .

4. k p- . 

(2.5)

: k

.

5. k- , 

(2.6)

0<

(2.7)

: (2.6). . p

(2.8)

p-1, - , (2.5) (2.8),

. p

(2.9)

p, - , (2.5) (2.9),

,

(2.6) . (2.7) (2.6),  0<

(2.7) , f0 k

(2.10)

.

6. f r- f(r).

(2.11)

k

(2.12)

:

k=0, (2.11). .


3. .

.

7. k. {Kn(t)}(n=0,1,...), Kn(t) n, :

(3.1)

(3.2)

(3.3)

. , , Kn(t) ,

k0-, n, p

,

bp , (3.1).

8. {Kn(t)} ,

(3.4)

. , (3.2) (3.3)

.

1. k- .

(3.5)

. {Kn(t)} (n=1,1,2,...) 7.

, n-1.

(3.6)

. (2.6) , ,

(3.4) :

(3.6), . .

1.1. k- , r- .

(3.7)

, (2.12)

1 (3.7).


4. ...

.. .

2. . k

(4.1)

,

.. [2].

.

2.1. ( ..):

(4.2)

(4.1) ,

( .. [5]) 2 2,

(4.2).

,

2.2. .

(4.3)

2,

(4.4)

, (4.3) , .

2.3. .

(4.5)

,

(4.6)

2.4.

(4.7)

,

(4.8)

, (4.4) (2.12) :

(4.5).

2.5.

. (4.9)

2.4, (2.7).


5. , .

, tn(x) f, f.

3. k n

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

. (5.2) (5.4) , (5.3)- . , (5.2) , (5.4); (5.4) .

. (5.2). (2.1), (2.2) (5.1),

(5.5). (5.2) . :

(4.5) (5.5).

(5.3) (5.5) (2.11).

(5.4). . (5.4) :

, , . (2.7)

(5.3), (5.4) .

, .

3.1. k n

(5.6)

>0

(5.7)

n.

3.2. k n

(5.8)

4. , , ,

(5.9)

n.

1, 3.1 (5.9), .

5. , , ,

(5.10)

4, 3.1 3.2.

3 , 20. , n tn {tn} (n=1,2,...), 20 , , n 3 , n. .

6. k

(5.11)

(5.12)

>0

(5.13)

n.

. . (5.2) ,

(5.11)

(5.14)

. (5.14) .

, (4.7), ,

, , ,

,

.

, (5.11) 6.


6. . .

. -.

“ ” . f, {En}.

9. k,

(6.1)

. (6.2)

(6.3)

. , (2.1),

(2.10) (6.2)

(2.2) (6.1)

n,

.

. , .

7. k- ,

(6.4)

,

(6.5)

. (6.5) 3.2. , 9. :

;

.

.

7.1. k- ,

(6.6)

,

(6.7)

7.2. k-

(6.8)

n.

7 6.

7 , (6.4), . , (6.4). , (6.5) . , (6.4) (6.5).

10.

(6.9)

. k

(6.10)

. n, p

:

,

(6.11)

Ul(k). l=1,2,...,p

nl. .. ,

(6.12)

, , {nl},

, {Fn}2 ,

(6.13)

(6.11), (6.12) (6.13) :

.

8. k

(6.14)

.

, 10,

9. :

, . ,

.

, {En} (6.4)

9. k; . ,

(6.15)

. (6.15) 1. . 8,

, , ,

.

9.1. . .

9.2. .

n.

. f f (r)?

10. r,

(6.16)

(6.17)

f f(r)

(6.18)

.. [3] : , f f (r). .. , , : (6.16) (6.17). f f(r) x. 10 .

. . x. , {nk} (k=0,1,2,...) ,

n

(6.19)

, (6.19) r , ..

(6.20)

, . , .

. ..,

, :

(6.21)

, , (6.20). (6.20) (6.21) ,

.

(6.18) . , ,

(6.22)

(6.22) (6.18)

10.1. r-

(6.23)

11. r- f

k

(6.24)

.

, 10,

, 10,

9.

,

, ,

.

7. .

: ,

- ?

, . .

11.

(7.1)

>0,

(7.2)

. (7.1), 60>0 C61>0,

(7.3)

, 1 3

(7.4)

(2.1) (2.2),

(7.3) (7.4), ,

(7.5)

, .

(7.5),

(7.6)

, . (7.6)

.

. .

(7.7)

, , ,

. (7.8)

. (7.7), .. 67 68,

(7.9)

, 1 (7.9), k

..

, ,

, , ,

, (7.9) 9 72 ,

(7.8).

(7.8):

(7.10)

73>0. 1 (6.10),

11,

77>0.

, (7.8), .

11 , .

12.

(7.11)

(7.12)

. , 11,

,

.


8. .

1.

2. f(x) , .8.1. .8.2.

. 8.1. . 8.2.

3.

- .


. 8.3.

. 8.4.

, (. 8.3)

(. 8.4)

.. , , .

4.

.

5.

.

6.

.

.

  1. .. // . ,-1947.-57.-.111-114.

  2. .. // . ,-1949.-65.-.135-137.

  3. .. // . . . - (2), -1912.-13.-.49-144.

  4. .. . I,-.-.,-1937.

  5. . .. // . ,-1948.-65.-.135-137.

  6. .. .-.-.,-1934.

  7. .. . -.: .-1977.-.512.

  8. .. // . ,-1949.-65.-.135-137.

  9. .. . -.:,-1960.-. 624.

  10. .. .-.:,-1947.-324.

  11. .. // ,-.22.-1977.-2.-.231-243.

  12. .. // . -,-1931.-15.-.219-242.



: - 150 . - 700 . - 2500 . . ..

 

 

 

! , , , .
. , :