курсовые,контрольные,дипломы,рефераты
Т.Сумма смежных углов = 180°
Т.Вертикальные углы равны (общая вершина,стороны одного сост.продолжение сторон друг.)
Две прямые наз-ся параллельн., если они лежат в 1-й плоскости и не пересекаются.
Акс. (осн.св-во паралл.прямых) Через точку, не леж. на данной прямой можно провести на плоскости только 1 прямую, параллельную данной.
Сл.: 1. Если прямая пересекает 1 из паралл. Прямых, то перес-ет и другую.
2. Если две прямые | | 3-ей, то | | друг другу.
Признаки параллельности прямых. Е
А В В А А В
С Д Д
Д С С
ÐВАС ÐДСА внутр. одностор. (1рис)
ÐВАС ÐДСА внутр. накрест лежащ. (2)
ÐЕАВ ÐАСД соответств. (3)
Т 1. Если при пересеч. 2-х прямых на плоскости внутр.накрест лежащ. Ð =, то прямые параллельны.
Т 2. Если при пересеч 2-х прямх секущей соответственные углы равны,ðпрямые| |.
Док-во Пусть (а) и (b) обр-т к секущей АВ равные соотв. Ð1=Ð2
Но Ð1=Ð3 (вертикальные)ðÐ3=Ð2.Но Ð2 и Ð3-накрестлежщие.ðПо Т 1 a | | bn
Т3. Если при пересеч. 2-х прямых секущей на плоскости, сумма внутр. одност. Ð=180°, то прямые | |n
Для ТТ 1-3 есть обратыные.
Т4. Если 2 паралл.прямые пересечны 3-й
прямой, то внутр.накрестлеащие Ð=, со-
ответств.Ð=, сумма внутр.одностÐ=180°.
Перпедикулярные пр-е пересек-ся Ð90°.
1.Через кажд.тчку прямой можно провести ^ ей прямую, и только 1.
2. Из любой тчки (Ï данной прямой) можно опустить перпендикуляр^ на данную прямцю и только 1.
3. две прямые ^ 3-й параллельны.
4. Если прямая ^ 1-й из | | прямых, то она ^ и другой.
Многоугольник (n-угольник)
Т. Любой правильный выпуклый мн-к можно вписать в окружность и описать около окружности. (R- опис., r- впис.)
R = a / 2sin(180°/n); r = a / 2 tg (180°)
Треугольник NB! 1. Все 3 высоты каждогоÑ пересек. в 1 тчке (ортоцентр).
2. Все 3 медианы пересек. в 1 тчке (центр тяжести) - делит кажд. Медиану в отн 2:1 (счит. От вершины).
3. Все 3 биссектр. Ñ пересек. в 1 тчке -
центр впис. Круга.
4. Все 3 ^, восстановленные из середин сторон Ñ, пересе. в 1 тчке - центр опис. круга.
5. Средняя линия | | и = ½ основания
H(опущ. на стор. a) = 2√p(p-a)(p-b)(p-c)
a
M(опущ на стор a) = ½ √ 2b2+2c2 -a2
B (-‘’-)= 2√ bcp(p-a) / b+c
p - полупериметр
a²=b²+c²-2bx, х-проекция 1-й из сторон
Признаки равенства Ñ: 2Ñ=, если = сотв.
1. 2 стороны и Ð между ними.
2. 2 Ð и сторона между ними.
3. 2 Ð и сторона, противолеж. 1-му из Ð
4. три стороны
5. 2 стороны и Ð , лежащий против большей из них.
Прямоугольный Ñ C=90° a²+b²=c²
NB! TgA= a/b; tgB =b/a;
sinA=cosB=a/c; sinB=cosA=b/c
Равносторонний Ñ H= √3 * a/2
S Ñ= ½ h a =½ a b sin C
Параллелограмм
d²+d`²=2a²+ 2b²
S =h a=a b sinA(между а и b)
= ½ d d` sinB (между d d`)
Трапеция S= (a+b) h/2 =½uvsinZ= Mh
Ромб S=a h =a²sinA= ½ d d`
Окружность L= pRn° / 180°,n°-центрÐ
Т.Впис.Ð= ½ L , L-дуга,на ктрую опирÐ
S(cектора)= ½ R²a= pR²n° / 360°
Векторы.. Скалярное произведение
`а`b=|`a| |`b| cos (`a Ù`b),
|`a| |`b| - длина векторов
Скалярное произведение |`a|{x`; y`} и |`b|{x``; y``}, заданных своими коорди-натами, =
|`a| |`b| = x` × y` + x`` × y``
Преобразование фигур
1. Центр. Симметрия
2. Осевая симметрия (^)
3. Симм. Отн-но плоскости (^)
4. Гомотетия (точки Х О Х`` лежат на 1 прямой и расст. ОХ``=k OX, k>0 - это гомотетия отн-но О с коэфф. К .
5. Движение (сохр расст. Между точками фигуры)
6. Поворот
7. Вращение - вокруг оси - преобр. Пространства, когда:
- все точки оси переходят сами в себя
- любая точка АÏ оси р АðА` так, что
А и А` Î a, a^р, ÐАОА` = j= const, О- точка пересеч. a и р.
Результвт 2-х движений= композиции.
8. Паралeн.перенос (x,y,z)ð(x+a,y=b,x=c)
9. Преобразование подобюием - расст. Между тчками измен-ся в k раз
К=1 - движение.
Св-ва подобия.
1. АВСÎ(а); A`B`C` Î(a`)
2. (p) ð (p`); [p)ð[p`); aða`; ÐAðÐA`
3. Не всякое подобие- гомотетия
NB! S` = k² S``; V ` = k 3 V ``
Плоскости.
Т. Если прямая, Ï к.-л. плоскости a , | | к.-л. прямой, Î a, то она | | a
Т. (а) | | (b), через (а)и (b) провести плоскость, то линия их пересеч.| | (а)и (b)
T. (Признак парал. 2-х плоск.).Если 2 пересек. прямые 1-й a | | двум пересек. прямым другой b, то a | | b.
Т. Если 2 парал. Плоск-ти пересеч. 3-й, то линии пересечения | |.
Т. Через тчку вне плоскости можно провести плоск-ть | | данной и только 1.
Т. Отрезки парал. Прямых, заключенные между 2-мя плоскостями, =.
Т. Признак ^ прямой и пл-сти.Если прямая, перек-ая плос-ть, ^каждой из 2-х перек-ся прямых, то прямая и пл-сть ^.
Т. 2 ^ к пл-сти | |.
Т. Если 1 из 2-х паралл. прямых ^, то и другая ^ плоскости.
Т. Признак ^ 2-х плос-тей. Если пл-сть проходит через ^ к др. п-сти, то он ^ этой л-сти.
Дано [a)^ b,[a) Îa,a Èb= (p).Д-ть: a ^ b
Док-во. [a)^ b=·М. Проведем (b) через М, (b)^(p). (a)Ù(b) - линейный Ð двугранного угла между a и b. Так как [a)^ bð(a)^(b)ð (a)Ù(b)=90°ða ^ bn
Т. Если 2 пл-сти взаимно ^, то прямая
1-й пл-сти ^ линии пересеч. пл-стей, ^ 2-й пл-сти.
Т. О 3-х ^.. Для того, чтобы прямая, леж-я в пл-сти,, была ^ наклонной, необх-мо и достаточно, чтобы эта прямая была ^ проекции наклонной.
Многогранники
Призма. V = S осн × a - прямая призма
a - боковое ребро , S пс- S ^-го сечения
V = S пс × а - наклонная призма
V = Sбок. пов-сти призмы + 2Sосн.
Если основание пр. = параллелограмм, то эта призма - параллелепипед.
V=h Sосн. ; Vпрямоуг.параллел-да = abc
S=2(ab+ac+bc)
Пирамида V= 1/3 * НS осн. S=S всех Ñ.
Фигуры вращения
Цилиндр V=pR²H; S= 2pR (R+H)
Конус V= 1/3 * НS осн= 1/3 * pR²H
S= Sосн+ Sбок= pR (r + L); L-образующая
Сфера «оболочка» S= 4pR²
Шар М= 4/3 pR3
ARCSIN a
-p/2£arcsin a £p/2 sin(arcsin a)=a
arcsin (-a)= -arcsin a
a |
0 |
1/2 |
Ö2/2 |
Ö3/2 |
1 |
arcsin a |
0 |
p/6 |
p/4 |
p/3 |
p/2 |
SIN X= A
x=(-1)n arcsin a +pk
sin x=0 |
x=pk |
sin x=1 |
x=p/2+2pk |
sin x=-1 |
x=-p/2+2pk |
ARCCOS a
0 £arccos a £p cos(arccos a)=a
arccos (-a)=p -arccos a
a |
0 |
1/2 |
Ö2/2 |
Ö3/2 |
1 |
arccos a |
p/2 |
p/3 |
p/4 |
p/6 |
0 |
COS X= A
x=± arccos a +2pk
cos x=0 |
x=p/2+pk |
cos x=1 |
x=2pk |
cos x=-1 |
x=p+2pk |
ARCTG a
-p/2£arctg a £p/2 tg(arctg a)=a
arctg (-a)= -arctg a
a |
0 |
Ö3/3 |
1 |
Ö3 |
tg a |
0 |
p/6 |
p/4 |
p/3 |
TG X= A
x=± arctg a +pk
sina*cosb=1/2[sin(a-b)+sin(a+b)]
sina*sinb=1/2[cos(a-b)-cos(a+b)]
cosa*cosb=1/2[cos(a-b)+cos(a+b)]
sina*cosb=1/2[sin(a-b)+sin(a+b)]
sina*sinb=1/2[cos(a-b)-cos(a+b)]
cosa*cosb=1/2[cos(a-b)+cos(a+b)]
sina+sinb=2sin(a+b)/2 * cos(a-b)/2
sina-sinb=2sin(a-b)/2 * cos(a+b)/2
cosa+cosb=2cos(a+b)/2 * cos(a-b)/2
cosa-cosb=-2sin(a+b)/2 * sin(a-b)/2
(a+b)2=a2+2ab+b2
(a-b)2=a2+2ab+b2
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
a2-b2=(a-b)(a+b)
(a+b)3=a3+3a2b+3ab2+b3
(a-b)3=a3-3a2b+3ab2-b3
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+ b2)
0 |
p/6 |
p/4 |
p/3 |
p/2 |
p |
2/3p |
3/4p |
5/6p |
3/2p |
|
0 |
30° |
45° |
60° |
90° |
180 |
120° |
135° |
150° |
270° |
|
sin |
0 |
1/2 |
Ö2/2 |
Ö3/2 |
1 |
0 |
Ö3/2 |
Ö2/2 |
1/2 |
-1 |
cos |
1 |
Ö3/2 |
Ö2/2 |
1/2 |
0 |
-1 |
-1/2 |
-Ö2/2 |
-Ö3/2 |
0 |
tg |
0 |
1/Ö3 |
1 |
Ö3 |
- |
0 |
-Ö3 |
-1 |
-1/Ö3 |
- |
ctg |
- |
Ö3 |
1 |
1/Ö3 |
0 |
- |
-1/Ö3 |
-1 |
-Ö3 |
0 |
sin2+cos2=1 sin=±Ö1-cos2 sin(-a)=-sina tg(-a)=-tga
tg•ctg=1 cos=±Ö1-sin2 cos(-a)=cosa ctg(-g)=-ctga
tg=1/ctg ctg=1/tg 1+tg2=1/cos2=sec2
sin2=(1-cos)(1+cos) 1+ctg2=1/sin2=cosec2 sin2a=2sina•cosa
cos2=(1-sin)(1+sin) 1-tg2/(1+tg2)=cos4-sin4 cos2a=cos2 a-sin2 a
cos/(1-sin)=1+sin/cos 1/(tg+ctg)=sin•cos tg2a=2tga/1-tga
cos(a+b)=cosa•cosb-sina•sinb sin3a=3sina-4sin3a
cos(a-b)=cosa•cosb+sina•sinb cos3a=4cos3a-3cosa
sin(a+b)=sina•cosb+cosa•sinb tg(a+b)=tga+tgb
sin(a-b)=sina•cosb-cosa•sinb 1-tga•tgb
2cos2a/2=1+cosa 2sin2a/2=1-cosa
0 |
p/6 |
p/4 |
p/3 |
p/2 |
p |
2/3p |
3/4p |
5/6p |
3/2p |
|||
0 |
30° |
45° |
60° |
90° |
180 |
120° |
135° |
150° |
270° |
|||
sin |
0 |
1/2 |
Ö2/2 |
Ö3/2 |
1 |
0 |
Ö3/2 |
Ö2/2 |
1/2 |
-1 |
||
|
1 |
Ö3/2 |
Ö2/2 |
1/2 |
0 |
-1 |
-1/2 |
-Ö2/2 |
-Ö3/2 |
0 |
||
tg |
0 |
1/Ö3 |
1 |
Ö3 |
- |
0 |
-Ö3 |
-1 |
-1/Ö3 |
- |
||
ctg |
- |
Ö3 |
1 |
1/Ö3 |
0 |
- |
-1/Ö3 |
-1 |
-Ö3 |
0 |
sin2+cos2=1 sin=±Ö1-cos2 sin(-a)=-sina tg(-a)=-tga
tg•ctg=1 cos=±Ö1-sin2 cos(-a)=cosa ctg(-g)=-ctga
tg=1/ctg ctg=1/tg 1+tg2=1/cos2=sec2
sin2=(1-cos)(1+cos) 1+ctg2=1/sin2=cosec2 sin2a=2sina•cosa
cos2=(1-sin)(1+sin) 1-tg2/(1+tg2)=cos4-sin4 cos2a=cos2 a-sin2 a
cos/(1-sin)=1+sin/cos 1/(tg+ctg)=sin•cos tg2a=2tga/1-tga
cos(a+b)=cosa•cosb-sina•sinb sin3a=3sina-4sin3a
cos(a-b)=cosa•cosb+sina•sinb cos3a=4cos3a-3cosa
sin(a+b)=sina•cosb+cosa•sinb tg(a+b)=tga+tgb
sin(a-b)=sina•cosb-cosa•sinb 1-tga•tgb
sin(2p-a)=-sina sin(3p/2-a)=-cosa
cos(2p-a)=cosa cos(3p/2-a)=-sina
tg(2p-a)=-tga tg(3p/2-a)=ctga
sin(p-a)=sina ctg(3p/2-a)=tga
cos(p-a)=-cosa sin(3p/2+a)=-cosa
sin(p+a)=-sina cos(3p/2+a)=sina
cos(p+a)=-cosa tg(p/2+a)=-ctga
sin(p/2-a)=cosa ctg(p/2+a)=-tga
cos(p/2-a)=sina sina+sinb=2sin(a+b)/2cos(a-b)[Ñ.Ê.Â.1] /2
tg(p/2-a)=ctga sina-sinb=2sin(a-b)/2*cos(a+b)[Ñ.Ê.Â.2] /2
ctg(p/2-a)=tga cosa+cosb=2cos(a+b)/2cos(a-b)/2
sin(p/2+a)=cosa cosa-cosb=-2sin(a+b)/2sin(a-b)/2
cos(p/2+a)=-sina
Y = S I N x
1).ООФ D(y)=R 2).ОДЗ E(y)=[-1;1]
3).Периодическая с периодом 2p
4).Нечётная; sin (-x)=-sin x
5).Возрастает на отрезках [-p/2+2pk;p/2+2pk], kÎZ
Убывает на отрезках [p/2+2pk;3p/2+2pk], kÎZ
6).Наибольшее значение=1 при х=p/2+2pk, kÎZ
Наименьшее значение=-1 при х=-p/2+2pk, kÎZ
7).Ноли функции х=pk, kÎZ
8).MAX значение=1 х=p/2+2pk, kÎZ
MIN значение=-1 х=-p/2+p+2pk, kÎZ
9).x>0 на отрезках [2pk;p+2pk], kÎZ
x<0 на отрезках [p+2pk;2p+2pk], kÎZ
Y = C O S x
1).ООФ D(y)=R 2).ОДЗ E(y)=[-1;1]
3).Периодическая с периодом 2p
4).Чётная; cos (-x)=cos x
5).Возрастает на отрезках [-p+2pk;2pk], kÎZ
Убывает на отрезках [2pk;p+2pk], kÎZ
6).Наибольшее значение=1 при х=2pk, kÎZ
Наименьшее значение=-1 при х=p=2pk, kÎZ
7).Ноли функции х=p/2+pk, kÎZ
8).MAX значение=1 х=2pk, kÎZ
MIN значение=-1 х=p+2pk, kÎZ
9).x>0 на отрезках [-p/2+2pk;p/2+2pk], kÎZ
x<0 на отрезках [-p/2+2pk;p/2+2pk], kÎZ
Y = T G x
1).ООФ D(y)-все, кроме х=p/2+pk kÎZ
2).ОДЗ E(y)=R
3).Периодическая с периодом p
4).Нечётная; tg (-x)=-tg x
5).Возрастает на отрезках (-p/2+pk;p/2+pk), kÎZ
6). Ноли функции х=pk, kÎZ
7). x>0 на отрезках (pk;p/2+pk), kÎZ
x<0 на отрезках (-p/2+pk;pk), kÎZ
PAGE
# "'Стр: '#'
'" [Ñ.Ê.Â.1]
PAGE
# "'Стр: '#'
'" [Ñ.Ê.Â.2]
Шпаргалки по математическому анализу для 1-го семестра в МАИ
Высшая математика (шпаргалка)
Шпаргалки по высшей математике
Математика. Интегралы
Ответы для програмированного контроля по начертательной геометрии...
Формулы по математике (11 кл.)
Шпаргалки по высшей математике (1 курс)
90 тригонометрических формул
Шпаргалки на экзамен в ВУЗе (1 семестр, математика)
Шпаргалка (математика)
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.